• Title/Summary/Keyword: Squeegee

Search Result 13, Processing Time 0.016 seconds

Screen Printing Electrode Formation Process for Crystalline Silicon Solar Cell (결정질 실리콘 태양전지용 스크린 프린팅 전극 공정 개발)

  • Eom, Taewoo;Lee, Sang Hyeop;Song, Chan Moon;Park, Sang Yong;Lim, Donggun
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • The screen printing technique is one of process to form electrode for crystalline silicon solar cell and has been studied a lot, because it has many advantages such as low price, high efficiency and mass production due to simple and fast process. The reason why electrode formation is important is for influence of series resistance and amount of incident light in crystalline silicon solar cell. In this study, electrode was formed by screen printing method with various conditions like squeegee angle, printing speed, snap off, printing pressure. After optimizing various conditions, double printing method was applied to obtain low series resistance and high aspect ratio. As a result, we obtained electrode resistance 45.31 ohm, aspect ratio 4.38, shading loss 7.549% mono-crystalline silicon solar cell with optimal double screen printing condition.

Effect of Metal Mask Screen on Metal-induced Recombination Current and Solar Cell Characteristics (금속 마스크 스크린이 금속 재결합 전류와 태양전지 특성에 미치는 영향)

  • Lee, Uk Chul;Jeong, Myeong Sang;Lee, Joon Sung;Song, Hee-eun;Kang, Min Gu;Park, Sungeun;Chang, Hyo Sik;Lee, Sang Hee
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The mesh mask screen, which is generally used for screen printing metallization of silicon solar cell, requires high squeegee pressure and low printing speed. These requirements are acting as a limiting factor in production yield in photovoltaic industries. In order to improve the productivity, a metal mask, which has high durability and high printing speed, has been researched. In this paper, the characteristics of each solar cell, in which electrodes were formed by using a metal mask and a mesh mask, were analyzed through recombination current density. In particular, the metal-induced recombination current density (Jom) representing the recombination of the emitter-metal interface was calculated using the shading method, and the resulting efficiency and open-circuit voltage were analyzed through the diode equation. As a result of analyzing the proportion of the metal-induced recombination current density to the total emitter recombination current density, it was analyzed that the reduction of the metal-induced recombination current density through the metal mask is an important factor in reducing the total recombination current density of the solar cell.

A Study on the Performance of Surface UV Printing Device for Power Indicator Production (파워인덕터 생산용 표면 UV 인쇄장치 성능 연구)

  • Hyun-Mu Lee;So-Mi An;Sung-Min Ahn;Jeong-Hwan Seo;Byoung-Jo Jung;Sung-Lin Kang
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • Research on power inductor surface UV printing equipment using cylindrical magnets can prevent damage to quality consumable materials (making plates, Squeegees) during printing and improve printing quality by applying technology to prevent product from flipping or standing up when fixing the product by making the magnetic formation of cylindrical magnets form up and down. The development of cylindrical magnets that changed the direction of magnetic force will stabilize the fixing method for metal products made by powder compression, increasing the production capacity for small products. Finally, by studying the power inductor surface UV printing device using cylindrical magnets, it can be differentiated from the spray and deeping methods that were being worked on, production will be greatly improved, and as a result, cost reduction and competitive production will be possible.