• Title/Summary/Keyword: Squarer

Search Result 17, Processing Time 0.035 seconds

Efficient polynomial exponentiation in $GF(2^m)$with a trinomial using weakly dual basis ($GF(2^m)$에서 삼항 기약 다항식을 이용한 약한 쌍대 기저 기반의 효율적인 지수승기)

  • Kim, Hee-Seok;Chang, Nam-Su;Lim, Jong-In;Kim, Chang-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.30-37
    • /
    • 2007
  • An exponentiation in $GF(2^m)$ is a basic operation for several algorithms used in cryptography, digital signal processing, error-correction code and so on. Existing hardware implementations for the exponentiation operation organize by Right-to-Left method since a merit of parallel circuit. Our paper proposes a polynomial exponentiation structure with a trinomial that is organized by Left-to-Right method and that utilizes a weakly dual basis. The basic idea of our method is to decrease time delay using precomputation tables because one of two inputs in the Left-to-Right method is fixed. Since $T_{sqr}$ (squarer time delay) + $T_{mul}$(multiplier time delay) of ow method is smaller than $T_{mul}$ of existing methods, our method reduces time delays of existing Left-to-Right and Right-to-Left methods by each 17%, 10% for $x^m+x+1$ (irreducible polynomial), by each 21%, 9% $x^m+x^k+1(1, by each 15%, 1% for $x^m+x^{m/2}+1$.

Characteristic analysis of Modular Multipliers and Squarers for GF($2^m$) (유한 필드 GF($2^m$)상의 모듈러 곱셈기 및 제곱기 특성 분석)

  • 한상덕;김창훈;홍춘표
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.5
    • /
    • pp.167-174
    • /
    • 2002
  • This paper analyzes the characteristics of three multipliers and squarers in finite fields GF(2/sup m/) from the point of view of processing time and area complexity. First, we analyze structures of three multipliers and squarers: 1) Systolic array structure, 2), LFSR structure, and 3) CA structure. To make performance analysis, each multiplier and squarer was modeled in VHDL and was synthesized for FPGA implementation. The simulation results show that CA structure is the best from the point view of processing time, and LFSR structure is the best from the point of view of area complexity.

  • PDF

Efficient Operator Design Using Variable Groups (변수그룹을 이용한 효율적인 연산기 설계)

  • Kim, Yong-Eun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.37-42
    • /
    • 2008
  • In this paper, we propose a partial product addition method using variable groups in the design of operators such as multipliers and digital filters. By this method, full adders can be replaced with simple logic circuits. To show the efficiency of the proposed method, we applied the method to the design of squarers and precomputer blocks of FIR filters. In case of 7 bit and 8 bit squarers, it is shown that by the proposed method, area, power and delay time can be reduced up to {22.1%, 20.1%, 14%} and {24.7%, 24.4%, 6.7%}, respectively, compared with the conventional method. The proposed FIR precomputer circuit leads to up to {63.6%, 34.4%, 9.8%} reduction in area, power consumption and propagation delay compared with previous method.

An Efficient Hardware Implementation of 257-bit Point Scalar Multiplication for Binary Edwards Curves Cryptography (이진 에드워즈 곡선 공개키 암호를 위한 257-비트 점 스칼라 곱셈의 효율적인 하드웨어 구현)

  • Kim, Min-Ju;Jeong, Young-su;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.246-248
    • /
    • 2022
  • Binary Edwards curves (BEdC), a new form of elliptic curves proposed by Bernstein, satisfy the complete addition law without exceptions. This paper describes an efficient hardware implementation of point scalar multiplication on BEdC using projective coordinates. Modified Montgomery ladder algorithm was adopted for point scalar multiplication, and binary field arithmetic operations were implemented using 257-bit binary adder, 257-bit binary squarer, and 32-bit binary multiplier. The hardware operation of the BEdC crypto-core was verified using Zynq UltraScale+ MPSoC device. It takes 521,535 clock cycles to compute point scalar multiplication.

  • PDF

Area Efficient Bit-serial Squarer/Multiplier and AB$^2$-Multiplier (공간 효율적인 비트-시리얼 제곱/곱셈기 및 AB$^2$-곱셈기)

  • 이원호;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.1-9
    • /
    • 2004
  • The important arithmetic operations over finite fields include exponentiation, division, and inversion. An exponentiation operation can be implemented using a series of squaring and multiplication operations using a binary method, while division and inversion can be performed by the iterative application of an AB$^2$ operation. Hence, it is important to develop a fast algorithm and efficient hardware for this operations. In this paper presents new bit-serial architectures for the simultaneous computation of multiplication and squaring operations, and the computation of an $AB^2$ operation over $GF(2^m)$ generated by an irreducible AOP of degree m. The proposed architectures offer a significant improvement in reducing the hardware complexity compared with previous architectures, and can also be used as a kernel circuit for exponentiation, division, and inversion architectures. Furthermore, since the Proposed architectures include regularity and modularity, they can be easily designed on VLSI hardware and used in IC cards.

A Study on Circuit Design Method for Linearity and Range Improvement of CMOS Analog Current-Mode Multiplier (CMOS 아날로그 전류모드 곱셈기의 선형성과 동적범위 향상을 위한 회로설계 기법에 관한 연구)

  • Lee, Daniel Juhun;Kim, Hyung-Min;Park, So-Youn;Nho, Tae-Min;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.479-486
    • /
    • 2020
  • In this paper, we present a design method for improving the linearity and dynamic range of the analog current mode multiplier circuit, which is one of the key devices in an analog current mode AI processor. The proposed circuit consists of 4 quadrant translinear loops made up of NMOS transistors only, which minimizes physical mismatches of the transistors. The proposed circuit can be implemented at 117㎛ × 109㎛ in 0.35㎛ CMOS process and has a total harmonic distortion of 0.3%. The proposed analog current mode multiplier is expected to be useful as the core circuit of a current mode AI processor.

Experimental Study on Performance Comparison of Air-Conditioner with PF Heat Exchanger (PF 열교환기를 적용한 공조기의 성능 비교 실험연구)

  • Kwon, Young-Chul;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.470-475
    • /
    • 2009
  • In the present study, the heat transfer characteristics of the fin-tube and PF heat exchangers and the performances of the air-conditioner are experimentally investigated. Also, Cooling Seasonal Performance Factor(CSPF) of the air-conditioner is evaluated. For the heat exchanger experiment, the heat transfer and pressure drop are obtained. For the air-conditioner experiment, the cooling capacity, input power and COP are obtained. The air-enthalpy calorimeter and the constant temperature water bath are used. As the inlet air velocity increases, the heat transfer rate and pressure drop of the heat exchanger increased. PF heat exchanger has smaller refrigerant weight and larger capacity and COP than the fin-tube heat exchanger. The performance of PF-2 heat exchanger with the squarer fin is more excellent than that of PF-1 heat exchanger with the triangler fin. Also, CSPF of the fm -tube and PF heat exchanger is evaluated.