• Title/Summary/Keyword: Square wave adsorptive stripping voltammetry

Search Result 2, Processing Time 0.014 seconds

Determination of Fluoroquinolone Antibacterial Agents by Square Wave Adsorptive Stripping Voltammetry (네모파 흡착 벗김 전압전류법에 의한 플루오로퀴놀론 계 항생제의 검출)

  • Boo, Han-Kil;Song, Youn-Joo;Park, Se-Jin;Chung, Taek-Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • Electrochemical behavior of fluoroquinolone antibacterial agents on carbon paste electrode (CPE) were investigated by cyclic voltammetry and square wave adsorptive stripping voltammetry. The fluoroquinolone antibacterial agents tested in this study were Enrofloxacin (ENR), Norfloxacin (NOR), Ciprofloxacin (CIP), Ofloxacin (OFL) and Levofloxacin (LEV). In acetate buffer at pH 4.5, the oxidation peak potentials of the fluoroquinolone antibacterial agents of ENR, NOR, CIP, OFL, and LEV were 0.952 V, 1.052 V, 1.055 V, 0.983 V, and 0.990 V (vs. Ag/AgCl), respectively. And their oxidation peak currents from square wave adsorptive stripping voltammograms are proportional to the concentration of each antibacterial agent over the range from $0.2\;{\mu}M$ to $1\;{\mu}M$.

Adsorptive Behavior of Catechol Violet and Its Thorium Complex on Mercury Electrode in Aqueous Media

  • Rabia Mostafa K. M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • Cyclic voltammetry and chronocoulometry have been used for characterization of catechol violet (CV) at the hanging mercury drop electrode in acetic acid-sodium acetate buffer solution. At pH 2.94 a nearly symmetric cyclic voltammetric wave due to an irreversible weak adsorption of CV on mercury was obtained at concentration of $0.53{\mu}mol\;dm ^{-3}$. Under these conditions, CV adsorbes in a monolayer. Upon increasing the concentration, the symmetry of the wave decreases; it can be attributed to a mixed diffusion adsorption process. The amount of the adsorbed catechol violet on the HMDE expressed as surface concentration as well as the surface areaf occupied by one molecule$(\sigma)$ were calculated. It was found that the values obtained for f and o utilizing cyclic voltammetric and chrono-coulometry are almost identical. A 1:1 and 1:2 Th (IV)-CV complexes are formed on addition of thorium (IV) to catechol violet. These complexes are adsorbed and reduced on the HMDE at more negative potentials than the peak potential of free CV, Using the square-wave (SW) technique, the adsorptive cathodic stripping voltammetry, ACSV, of these complexes was studied. It was found that the SW-ACSV of Th(IV)-CV can be applied to the determination of thorium at the nanomole level. Optimum conditions and the analytical method of determination were presented and discussed.