DOI QR코드

DOI QR Code

Determination of Fluoroquinolone Antibacterial Agents by Square Wave Adsorptive Stripping Voltammetry

네모파 흡착 벗김 전압전류법에 의한 플루오로퀴놀론 계 항생제의 검출

  • Boo, Han-Kil (The Cooperative Center for Nano-Bio Applied Technology, Sungshin Women's University) ;
  • Song, Youn-Joo (Department of Chemistry, Seoul National University) ;
  • Park, Se-Jin (Basic Science Research Institute, Sungshin Women's University) ;
  • Chung, Taek-Dong (Department of Chemistry, Seoul National University)
  • 부한길 (성신여자대학교 나노바이오응용기술센터) ;
  • 송연주 (서울대학교 화학부) ;
  • 박세진 (성신여자대학교 기초과학연구소) ;
  • 정택동 (서울대학교 화학부)
  • Published : 2010.02.27

Abstract

Electrochemical behavior of fluoroquinolone antibacterial agents on carbon paste electrode (CPE) were investigated by cyclic voltammetry and square wave adsorptive stripping voltammetry. The fluoroquinolone antibacterial agents tested in this study were Enrofloxacin (ENR), Norfloxacin (NOR), Ciprofloxacin (CIP), Ofloxacin (OFL) and Levofloxacin (LEV). In acetate buffer at pH 4.5, the oxidation peak potentials of the fluoroquinolone antibacterial agents of ENR, NOR, CIP, OFL, and LEV were 0.952 V, 1.052 V, 1.055 V, 0.983 V, and 0.990 V (vs. Ag/AgCl), respectively. And their oxidation peak currents from square wave adsorptive stripping voltammograms are proportional to the concentration of each antibacterial agent over the range from $0.2\;{\mu}M$ to $1\;{\mu}M$.

플루오로퀴놀론 계 항생제들의 전기화학적 거동을 카본 페이스트 전극 (carbon paste electrode ; CPE)을 사용하여 순환 전압전류법 (cyclic voltammetry)과 네모파 흡착 벗김 전압전류법 (square wave adsorptive stripping voltammetry)으로 연구하였다. Enrofloxacin (ENR), Norfloxacin (NOR), Ciprofloxacin (CIP), Ofloxacin (OFL), Levofloxacin (LEV) 등 5가지 플루오로퀴놀론 계 항생제에 대한 전기화학적 분석을 수행하였다. pH 4.5인 아세트산 완충 용액 (acetate buffer) 에서 플루오로퀴놀론 계 항생제의 산화 전위는 Ag/AgCl 기준 전극에 대하여 각각 ENR : 0.952V, NOR : 1.052 V, CIP : 1.055 V, OFL : 0.983 V, LEV : 0.990 V 의 값을 나타내었으며, 네모파 흡착 벗김 전압전류법에 의한 산화 전류는 $0.2\;{\mu}M$에서 $1\;{\mu}M$ 사이의 농도영역에서 각 항생제의 농도와 선형을 나타내었다.

Keywords

References

  1. K. Drlica and X. Zhao, ‘DNA Gyrase, Topoisomerase IV, and the 4-Quinolones’ Microbiol. Mol. Biol. Rev., 61, 377 (1997).
  2. G. J. Heo, K. S. Shin, and M. H. Lee, ‘Diseases of Aquaculture Animals and Prevention of Drug Residues’ Kor. J. Food. Hygiene., 7, 7 (1992).
  3. M. K. Hassouan, O. Ballesteros, J. Taoufiki, J. L. Vilchez, M. Cabrera-Aguilera, and A. Navalon, ‘Multiresidue Determination of Quinolone Antibacterials in Eggs of Laying Hens by Liquid Chromatography with Fluorescence Detection’ J. Chromatography B Analyt. Technol. Biomed. Life Sci., 852, 625 (2007). https://doi.org/10.1016/j.jchromb.2006.12.039
  4. Z. Zeng, A. Dong, G. Yang, Z. Chen, and X. Huang, ‘Simultaneous Determination of Nine Fluoroquinolones in Egg White and Egg Yolk by Liquid Chromatography with Fluorescence Detection’ J. Chromatography B Analyt. Technol. Biomed. Life Sci., 821, 202 (2005). https://doi.org/10.1016/j.jchromb.2005.05.007
  5. C. M. Karbiwnyk, L. E. Carr, S. B. Turnipseed, W. C. Andersen, and K. E. Miller, ‘Determination of Quinolone Residues in Shrimp using Liquid Chromatography with Fluorescence Detection and Residue Confirmation by Mass Spectrometry’ Anal. Chim. Acta, 596, 257(2007). https://doi.org/10.1016/j.aca.2007.06.018
  6. M. J. Schneider, A. M. Darwish, and D. W. Freeman, ‘Simultaneous Multiresidue Determination of Tetracyclines and Fluoroquinolones in Catfish Muscle using High Performance Liquid Chromatography with Fluorescence Detection’ Anal. Chim. Acta, 586, 269 (2007). https://doi.org/10.1016/j.aca.2006.09.025
  7. B. Roudaut and J. C. Yorke, ‘High-Performance Liquid Chromatographic Methode with Fluorescence Detection for the Screening and Quantification of Oxolinic Acid, Flumequine and Sarafloxacin in Fish’ J. Chromatography B Analyt. Technol. Biomed. Life Sci., 780, 481 (2002). https://doi.org/10.1016/S1570-0232(02)00641-4
  8. N. Gorla, E. Chiostri, L. Ugnia, A. Weyers, N. Giacomelli, R. Davicino, and H. G. Ovando, ‘HPLC Residues of Enrofloxacin and Ciprofloxacin in Eggs of Laying Hens’ Int. J. Antimicrob. Agents, 8, 253 (1997). https://doi.org/10.1016/S0924-8579(97)00018-6
  9. V. Hormazabal and M. Yndestad, 'Rapid Assay for Monitoring Residues of Enrofloxacin in Milk and Meat Tissues by HPLC' J. Liquid Chromatogr., 17, 3775 (1994). https://doi.org/10.1080/10826079408013992
  10. D. C. Johnson, S. G. Weber, A. M. Bond, R. M. Wightman, R. E. Shoup, and I. S. Krull, ‘Electroanalytical voltammetry in flowing solutions’ Anal. Chim. Acta, 180, 187 (1986). https://doi.org/10.1016/0003-2670(86)80007-1
  11. M. Ghoneim, A. Radi, and A. M. Beltagi, ‘Deter-mination of Norfloxacin by Square-wave Adsorptive Voltammetry on a Glassy Carbon Electrode’ J. Pharm. Biomed. Anal., 25, 205 (2001). https://doi.org/10.1016/S0731-7085(00)00475-1
  12. A. Radi and Z. El-Sherif, ‘Determination of Levofloxacin in Human Urine by Adsorptive Square-wave Anodic Stripping Voltammetry on a Glassy Carbon Electrode’ Talanta, 58, 319 (2002). https://doi.org/10.1016/S0039-9140(02)00245-X
  13. S. Zhang and S. Wei, ‘Electrochemical Determination of Ciprofloxacin Based on the Enhancement Effect of Sodium Dodecyl Benzene Sulfonate’ Bull. Korean Chem. Soc., 28, 543 (2007). https://doi.org/10.5012/bkcs.2007.28.4.543

Cited by

  1. Electrochemical Detection of Trace Level Copper in in vivo Cell vol.21, pp.11, 2012, https://doi.org/10.5322/JES.2012.21.11.1333
  2. Electroanalysis of antitubercular drugs in pharmaceutical dosage forms and biological fluids: A review vol.853, 2015, https://doi.org/10.1016/j.aca.2014.09.054
  3. Antibiotic residues in milk and eggs of commercial and local farms at Chittagong, Bangladesh vol.8, pp.4, 2015, https://doi.org/10.14202/vetworld.2015.467-471