• Title/Summary/Keyword: Square pulse

Search Result 259, Processing Time 0.025 seconds

Partial Discharge Signal Denoising using Adaptive Translation Invariant Wavelet Transform-Online Measurement

  • Maheswari, R.V.;Subburaj, P.;Vigneshwaran, B.;Iruthayarajan, M. Willjuice
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.695-706
    • /
    • 2014
  • Partial discharge (PD) measurements have emerged as a dominant investigative tool for condition monitoring of insulation in high voltage equipment. But the major problem behind them the PD signal is severely polluted by several noises like White noise, Random noise, Discrete Spectral Interferences (DSI) and the challenge lies with removing these noise from the onsite PD data effectively which leads to preserving the signal for feature extraction. Accordingly the paper is mainly classified into two parts. In first part the PD signal is artificially simulated and mixed with white noise. In second part the PD is measured then it is subjected to the proposed denoising techniques namely Translation Invariant Wavelet Transform (TIWT). The proposed TIWT method remains the edge of the original signal efficiently. Additionally TIWT based denoising is used to suppress Pseudo Gibbs phenomenon. In this paper an attempt has been made to review the methodology of denoising the PD signals and shows that the proposed denoising method results are better when compared to other wavelet-based approaches like Fast Fourier Transform (FFT), Discrete Wavelet Transform (DWT), by evaluating five different parameters like, Signal to noise ratio, Cross-correlation coefficient, Pulse amplitude distortion, Mean square error, Reduction in noise level.

An Investigation of Pulse Anodization Duty Ratio and Sealing Treatment on the Corrosion Behavior of the Anodic Coating Layer in Magnesium AZ31B

  • Setiawan, Asep Ridwan;Rachman, Muhammad Dani
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.45-51
    • /
    • 2021
  • In this work, we describe the effect of pulse anodizing duty ratio on the corrosion resistance of anodic films in magnesium AZ31B. The process involves the application of square pulse potential for a constant period with a duty ratio varying from 40, 60 and 80%. In several samples, a sealing treatment for 30 minutes was conducted after anodization in order to seal the pores available in the anodic layer. After anodizing, the surface morphology of the anodic layer was examined using a scanning electron microscope (SEM Hitachi SU3500). The corrosion characteristics of the sample were evaluated through an open circuit potential (OCP) and potentiodynamic polarization test using potentiogalvanostat. SEM observation shows that the increase of anodization duty ratio (α) results in a more uniform anodic layer, with fewer pores and cracks. The increase of duty ratio (α) decreases the OCP value from approximately -1.475 to about -1.6 Volt, and significantly improves the corrosion resistance of the anodic coating by 68%. The combination of anodization and sealing treatment produces an anodic coating with a very low corrosion rate of 4.4 mpy.

A Study on BEM-Based Numerical Simulation Technique for Underwater Explosions (수중 폭발 시뮬레이션을 위한 경계 요소법 기반의 수치 해석 기법 연구)

  • Choung, Joonmo;Lee, Jae-bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.271-277
    • /
    • 2020
  • Recoverability and vulnerability of navy ships under underwater explosion are critical verification factors in the acquisition phase of navy ships. This paper aims to establish numerical analysis techniques for the underwater explosion of navy ships. Doubly Asymptotic Approach (DAA) Equation of Motion (EOM) of primary shock wave and secondary bubble pulse proposed by Geers-Hunter was introduced. Assuming a non-compressive fluid, reference solution of the DAA EOM of Geers-Hunter using Runge-Kutta method was derived for the secondary bubble pulse phase with an assumed charge conditions. Convergence analyses to determine fluid element size were performed, suggesting that the minimum fluid element size for underwater explosion analysis was 0.1 m. The spherical and cylindrical fluid domains were found to be appropriate for the underwater explosion analyses from the fluid domain shape study. Because the element size of 0.1 m was too small to be applied to the actual navy ships, a very slender beam with the square solid section was selected for the study of fluid domain existence effect. The two underwater explosion models with/without fluid domain provided very similar results in terms of the displacement and stress processes.

Dynamic rod worth measurement method based on eqilibrium-kinetics status

  • Lee, Eun-Ki;Jo, YuGwon;Lee, Hwan-Soo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.781-789
    • /
    • 2022
  • KHNP had licensed Dynamic Control rod Reactivity Measurement (DCRM) method using detector current signals of PWRs in 2006. The method has been applied to all PWRs in Korea for about 15 years successfully. However, the original method was inapplicable to PWRs using low-sensitivity integral fission chamber as ex-core detectors because of their pulse pile-up and the nonlinearity of the mean-square voltage at low power region. Therefore, to overcome this disadvantage, a modified method, DCRM-EK, was developed using kinetics behavior after equilibrium condition where the pulse counts maintain the maximum value before pulse pile-up. Overall measurement, analysis procedure, and related computer codes were changed slightly to reflect the site test condition. The new method was applied to a total of 15 control rods of 1000 MWe and 1400 MWe PWRs in Korea with worths in the range of 200 pcm -1200 pcm. The results show the average difference of -0.4% and the maximum difference of 7.1% compared to the design values. Therefore, the new DCRM-EK will be applied to PWRs using low sensitivity integral fission chambers, and also can replace the original DCRM when the evaluation fails by big noises present in current or voltage signals of uncompensated/compensated ion chambers.

Influence of Sustain Pulse-Width on the Electrical and Optical characteristics in AC-PDPs

  • Jeong, Y.W.;Cho, T.S.;Kim, T.Y.;Choi, M.C.;Ahn, J.C.;Jeong, J.M.;Lim, J.Y.;Choi, S.H.;Chong, M.W.;Kim, S.S.;Ko, J.J.;Kim, D.I.;Lee, C.W.;Kang, S.O.;Cho, G.S.;Choi, E.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.155-158
    • /
    • 2000
  • Influence of sustain pulse-width on electro-luminous efficiency is experimentally investigated for surface discharge of AC-PDP. A square pulse with variable duty ratio and rising time of 300 ns has been used in the experiment. It is found that the firing voltage is decreased as the pulse-width is increased from 2 ${\mu}s$ to 8 ${\mu}s$ with sweeping frequency range of 10 kHz to 50 kHz. It has been found that the optimal sustain pulse-width is in the range of $3{\sim}4{\mu}s$ under driving frequency range of 30 kHz and 50 kHz, based on observation of memory coefficient, wall charge, and wall voltage as well as luminous efficiency.

  • PDF

Structures and components of pulsed DC-plasma-nitrided layers of an austenitic stainless steel (오스테나이트 스테인리스 강의 펄스 직류 플라즈마 질화처리층 조직 및 성분)

  • 박정렬;국정한
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.377-386
    • /
    • 1996
  • Austenitic stainless steel type 304L has been nitrided under the low pressure of high nitrogen environment for 5 hours by the square-wave-pulse-d.c. plasma as a function of temperature 400~$600^{\circ}C$ and of pulsation. At the temperature range lower than $500^{\circ}C$ and at the relatively high ratio of pulse duration to pulse period, nonstoichiometric stainless steel nitride has been developed in the form of a thin layer which has many cracks. At the temperature range higher than $500^{\circ}C$, with the increasing temperature or with the increasing ratio of the pulse duration to pulse period up to 50s/100s, the nitrided layer was composed mainly of CrN and Fe4N phases and became thick, uniform, columnar and nearly crack-free. The nitrided layer at $500^{\circ}C$ was mixed with the low-temperature layer and the high temperature layer and was very brittle.

  • PDF

A Design Method of Hybrid Analog/Asymmetrical-FIR Pulse-Shaping Filters with an Eye-Opening Control Option against Receiver Timing Jitter

  • Yao, Chia-Yu
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.911-920
    • /
    • 2010
  • This paper presents a method of designing hybrid analog/asymmetrical square-root (SR) FIR filters. In addition to the conventional frequency domain constraints, the proposed method considers time-domain constraints as well, including the inter-symbol interference (ISI) and the opening of the eye pattern at the receiver output. This paper also reviews a systematic way to find the discrete-time equivalence of analog parts in a band-limited digital communication system. Thus, a phase equalizer can be easily realized to compensate for the nonlinear phase responses of the analog components. With the hybrid analog/SR FIR filter co-design, examples show that using the proposed method can result in a more robust ISI performance in the presence of the receiver clock jitter.

Study on Hybrid PWM Method under Low Switching Frequency

  • Kekang, Wei;Zheng, Trillion Q.;Wang, Ran;Wang, Chenchen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.64-69
    • /
    • 2012
  • This paper presents a hybrid pulse width modulation (PWM) method under low switching frequency conditions based on space vector PWM (SVPWM) and selective harmonic eliminated PWM (SHEPWM), which use asynchronous carrier modulation SVPWM at low frequency, and SHEPWM at high frequency, a square wave after rated conditions. A transitive strategy is proposed to realize a smooth transition of individual modes including SVPWM, SHEPWM and square waves. Experimental results confirm this hybrid modulation method and their transition are reasonable and proper.

Surface Encoder Based on the Half-shaded Square Patterns (HSSP)

  • Lee, Sang-Heon;Jung, Kwang-Suk;Park, Eui-Sang;Shim, Ki-Bon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.82-84
    • /
    • 2008
  • A surface encoder based on the Half-shaded square pattern (HSSP) is presented. The HSSP working as reference grid is composed of the straight lines which are easy to be fabricated and make measuring time short. Since the periodic cell is separated in ON/OFF by the $45^{\circ}$ straight line, the duration from the starting point of scanning to the first rising edge and the duty cycle of the pulse train vary with respect to the position of the starting point. And the relationship between X and Y position and the duration, and duty cycle is described in the simple linear equation. Therefore, it is possible to measure X and Y position with the measured duration and duty cycle without calculating load. Through the test set-up, the feasibility of the proposed surface encoder was verified. Also the future works for improvement of performance were suggested.

Simple Design of Equiripple Square Root Pulse Shaping Filter (자승근형 등리플 파형성형 필터의 간단한 설계)

  • 오우진
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.2
    • /
    • pp.64-69
    • /
    • 2003
  • In this paper, I introduce a simple design method using existing filter design method, such as Parks-McClecllan algorithm, for root-squared type raised cosine filter with equiripple characteristics, Thought some design examples, we show that the proposed filter has much better performance in ripple than the conventional SRCF at the expense of small increasing of ISI. In addition, the proposed filter is compatible with conventional SRCF. Finally, the filter for W-CDMA which uses RRC (Root Raised Cosine) with a=0.22 is designed in 12bit finite precision.