• Title/Summary/Keyword: Square of mean of error

Search Result 2,166, Processing Time 0.03 seconds

The PRISM-based Rainfall Mapping at an Enhanced Grid Cell Resolution in Complex Terrain (복잡지형 고해상도 격자망에서의 PRISM 기반 강수추정법)

  • Chung, U-Ran;Yun, Kyung-Dahm;Cho, Kyung-Sook;Yi, Jae-Hyun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • The demand for rainfall data in gridded digital formats has increased in recent years due to the close linkage between hydrological models and decision support systems using the geographic information system. One of the most widely used tools for digital rainfall mapping is the PRISM (parameter-elevation regressions on independent slopes model) which uses point data (rain gauge stations), a digital elevation model (DEM), and other spatial datasets to generate repeatable estimates of monthly and annual precipitation. In the PRISM, rain gauge stations are assigned with weights that account for other climatically important factors besides elevation, and aspects and the topographic exposure are simulated by dividing the terrain into topographic facets. The size of facet or grid cell resolution is determined by the density of rain gauge stations and a $5{\times}5km$ grid cell is considered as the lowest limit under the situation in Korea. The PRISM algorithms using a 270m DEM for South Korea were implemented in a script language environment (Python) and relevant weights for each 270m grid cell were derived from the monthly data from 432 official rain gauge stations. Weighted monthly precipitation data from at least 5 nearby stations for each grid cell were regressed to the elevation and the selected linear regression equations with the 270m DEM were used to generate a digital precipitation map of South Korea at 270m resolution. Among 1.25 million grid cells, precipitation estimates at 166 cells, where the measurements were made by the Korea Water Corporation rain gauge network, were extracted and the monthly estimation errors were evaluated. An average of 10% reduction in the root mean square error (RMSE) was found for any months with more than 100mm monthly precipitation compared to the RMSE associated with the original 5km PRISM estimates. This modified PRISM may be used for rainfall mapping in rainy season (May to September) at much higher spatial resolution than the original PRISM without losing the data accuracy.

Estimation of Surface Solar Radiation using Ground-based Remote Sensing Data on the Seoul Metropolitan Area (수도권지역의 지상기반 원격탐사자료를 이용한 지표면 태양에너지 산출)

  • Jee, Joon-Bum;Min, Jae-Sik;Lee, Hankyung;Chae, Jung-Hoon;Kim, Sangil
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.228-240
    • /
    • 2018
  • Solar energy is calculated using meteorological (14 station), ceilometer (2 station) and microwave radiometer (MWR, 7 station)) data observed from the Weather Information Service Engine (WISE) on the Seoul metropolitan area. The cloud optical thickness and the cloud fraction are calculated using the back-scattering coefficient (BSC) of the ceilometer and liquid water path of the MWR. The solar energy on the surface is calculated using solar radiation model with cloud fraction from the ceilometer and the MWR. The estimated solar energy is underestimated compared to observations both at Jungnang and Gwanghwamun stations. In linear regression analysis, the slope is less than 0.8 and the bias is negative which is less than $-20W/m^2$. The estimated solar energy using MWR is more improved (i.e., deterministic coefficient (average $R^2=0.8$) and Root Mean Square Error (average $RMSE=110W/m^2$)) than when using ceilometer. The monthly cloud fraction and solar energy calculated by ceilometer is greater than 0.09 and lower than $50W/m^2$ compared to MWR. While there is a difference depending on the locations, RMSE of estimated solar radiation is large over $50W/m^2$ in July and September compared to other months. As a result, the estimation of a daily accumulated solar radiation shows the highest correlation at Gwanghwamun ($R^2=0.80$, RMSE=2.87 MJ/day) station and the lowest correlation at Gooro ($R^2=0.63$, RMSE=4.77 MJ/day) station.

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.

Performance evaluation of hyperspectral bathymetry method for morphological mapping in a large river confluence (초분광수심법 기반 대하천 합류부 하상측정 성능 평가)

  • Kim, Dongsu;Seo, Youngcheol;You, Hojun;Gwon, Yeonghwa
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.195-210
    • /
    • 2023
  • Additional deposition and erosion in large rivers in South Korea have continued to occur toward morphological stabilization after massive dredging through the four major river restoration project, subsequently requiring precise bathymetry monitoring. Hyperspectral bathymetry method has increasingly been highlighted as an alternative way to estimate bathymetry with high spatial resolution in shallow depth for replacing classical intrusive direct measurement techniques. This study introduced the conventional Optimal Band Ratio Analysis (OBRA) of hyperspectral bathymetry method, and evaluated the performance in a domestic large river in normal turbid and flow condition. Maximum measurable depth was estimated by applying correlation coefficient and root mean square error (RMSE) produced during OBRA with cascadedly applying cut-off depth, where the consequent hyperspectral bathymetry map excluded the region over the derived maximum measurable depth. Also non-linearity was considered in building relation between optimal band and depth. We applied the method to the Nakdong and Hwang River confluence as a large river case and obtained the following features. First, the hyperspectal method showed acceptable performance in morphological mapping for shallow regions, where the maximum measurable depth was 2.5 m and 1.25 m in the Nakdong and Hwang river, respectively. Second, RMSE was more feasible to derive the maximum measurable depth rather than the conventional correlation coefficient whereby considering various scenario of excluding range of in situ depths for OBRA. Third, highly turbid region in Hwang River did not allow hyperspectral bathymetry mapping compared with the case of adjacent Nakdong River, where maximum measurable depth was down to half in Hwang River.

Study of Motion Effects in Cartesian and Spiral Parallel MRI Using Computer Simulation (컴퓨터 시뮬레이션을 이용한 직각좌표 및 나선주사 방식의 병렬 자기공명 영상에서 움직임 효과 연구)

  • Park, Sue-Kyeong;Ahn, Chang-Beom;Sim, Dong-Gyu;Park, Ho-Chong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2008
  • Purpose : Motion effects in parallel magnetic resonance imaging (MRI) are investigated. Parallel MRI is known to be robust to motion due to its reduced acquisition time. However, if there are some involuntary motions such as heart or respiratory motions involved during the acquisition of the parallel MRI, motion artifacts would be even worse than those in conventional (non-parallel) MRI. In this paper, we defined several types of motions, and their effects in parallel MRI are investigated in comparisons with conventional MRI. Materials and Methods : In order to investigate motion effects in parallel MRI, 5 types of motions are considered. Type-1 and 2 are periodic motions with different amplitudes and periods. Type-3 and 4 are segment-based linear motions, where they are stationary during the segment. Type-5 is a uniform random motion. For the simulation, Cartesian and spiral grid based parallel and non-parallel (conventional) MRI are used. Results : Based on the motions defined, moving artifacts in the parallel and non-parallel MRI are investigated. From the simulation, non-parallel MRI shows smaller root mean square error (RMSE) values than the parallel MRI for the periodic (type-1 and 2) motions. Parallel MRI shows less motion artifacts for linear(type-3 and 4) motions where motions are reduced with shorter acquisition time. Similar motion artifacts are observed for the random motion (type-5). Conclusion : In this paper, we simulate the motion effects in parallel MRI. Parallel MRI is effective in the reduction of motion artifacts when motion is reduced by the shorter acquisition time. However, conventional MRI shows better image quality than the parallel MRI when fast periodic motions are involved.

  • PDF

The Effect of Corporate Association on the Perceived Risk of the Product (소비자의 제품 지각 위험에 대한 기업연상과 효과: 지식과 관여의 조절적 역활을 중심으로)

  • Cho, Hyun-Chul;Kang, Suk-Hou;Kim, Jin-Yong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.1-32
    • /
    • 2008
  • Brown and Dacin (1997) have investigated the relationship between corporate associations and product evaluations. Their study focused on the effects of associations with a company's corporate ability (CA) and its corporate social responsibility (CSR) on consumers' product evaluations. Their study has found that both of CA and CSR influenced product evaluation but CA association has a stronger effect than CSR associations. Brown and Dacin (1997) have, however, claimed that there are few researches on how corporate association impacts product responses. Accordingly, some of researchers have found the variables to moderate or to mediate the relationship between the corporate association and the product responses. In particular, there has been existed a few of studies that tested the influence of the reputation on the product-relevant perceived risk, but the effects of two types of the corporate association on the product-relevant perceived risk were not identified so far. The primary goal of this article is to identify and empirically examine some variables to moderate the effects of CA association and CSR association on the perceived risk of the product. In this articles, we take the concept of the corporate associations that Brown and Dacin (1997) had proposed. CA association is those association related to the company's expertise in producing and delivering its outputs and CSR association reflected the organization's status and activities with respect to its perceived societal obligations. Also, this study defines the risk, which is the uncertainty or loss of the product and corporate that consumers have taken in a particular purchase decision or after having purchased. The risk is classified into product-relevant performance risk and financial risk. Performance risk is the possibility or the consequence of a product not functioning at some expected level and financial risk is the monetary loss one perceives to be incurring if a product does not function at some expected level. In relation to consumer's knowledge, expert consumers have much of the experiences or knowledge of the product in consumer position and novice consumers does not. The model tested in this article are shown in Figure 1. The model indicates that both of CA association and CSR association influence on performance risk and financial risk. In addition, the effects of CA and CSR are moderated by product category knowledge (product knowledge) and product category involvement (product involvement). In this study, the relationships between the corporate association and product-relevant perceived risk are hypothesized as the following form. For example, Hypothesis 1a($H_{1a}$) is represented that CA association has a positive influence on the performance risk of consumer. Also, the hypotheses that identified some variables to moderate the effects of two types of corporate association on the perceived risk of the product are laid down. One of the hypotheses of the interaction effect is Hypothesis 3a($H_{3a}$), it is described that consumer's knowledges of the product moderates the negative relationship between CA association and product-relevant performance risk. A field experiment was conducted in order to examine our model. The company tested was not real but imagined to meet the internal validity. Water purifiers were used for our study. Four scenarios have been developed and described as the imaginary company: Type A with both of superior CA and CSR, Type B with superior CSR and inferior CA, Type C with superior CA and inferior CSR, and Type D with both inferior of CA and CSR. The respondents of this study were classified into four groups. One type of four scenarios (Type A, B, C, or D) in its questionnaire was given to the respondent who filled out questions. Data were collected by means of a self-administered questionnaire to the respondents, chosen in convenience. A total of 300 respondents filled out the questionnaire but 207 were used for further analysis. Table 1 indicates that the scales in this study are reliable because the range of coefficients of Cronbach's $\alpha$ are from 0.85 to 0.92. The composite reliability is in the range of 0,85 to 0,92 and average variance extracted is in 0.72-0.98 range that is higher than the base level of 0.6. As shown in Table 2, the values for CFI, NNFI, root-mean-square error approximation (RMSEA), and standardized root-mean-square residual (SRMR) are acceptably close to the standards suggested by Hu and Bentler (1999):.95 for CFI and NNFI,.06 for RMSEA, and.08 for SRMR. We also tested discriminant validity provided by Fornell and Larcker (1981). As shown in Table 2, we found strong evidence for discriminant validity between each possible pair of latent constructs in all samples. Given that these batteries of overall goodness-of-fit indices were accurate and that the model was developed on theoretical bases, and given the high level of consistency across samples, this enables us to proceed the previously defined scales. We used the moderated hierarchical regression analysis to test the influence of the corporate association(CA and CSR associations) on product-relevant perceived risk(performance and financial risks) and to identify the variables moderating the relationship between the corporate association and product-relevant performance risk. In this study, dependent variables are performance and financial risk. CA and CSR associations are described the independent variables. The moderating variables are product category knowledge and product category involvement. The results are, as expected, found that CA association has statistically a significant influence on the perceived risk of the product, but CSR association does not. Product category knowledge and involvement moderate the relationship between the CA association and the perceived risk of the product. However, the effect of CSR association on the perceived risk of the product is not moderated by the consumers' knowledge and involvement. For this result, it is necessary for a corporate to inform its customers CA association more than CSR association so that they could be felt to be the reduction of the perceived risk. The important theoretical contribution of this research is the meanings that two types of corporate association that Brown and Dacin(1997), and Brown(1998) have proposed replicated the difference of the effects on product evaluation. According to Hunter(2001), it was an important affair to accomplish the validity of a particular study and we had to take about ten studies to deduce a strict study. Next, there is the contribution of the this study to find that the effects of corporate association on the perceived risk of the product are varied by the moderator variables. In particular, the moderating effect of knowledge on the relationship between corporate association and product-relevant perceived risk has not been tested in Korea. In the managerial implications of this research, we suggest the necessity to stress the ability that corporate manufactures the product well(CA association) than the accomplishment of corporate's social obligation(CSR association). This study suffers from various limitations that imply future research directions. The moderating effects of product category knowledge and involvement on the relationship between corporate association and perceived risk need to be replicated. Next, future research could explore whether the mediated effects of the perceived risk has the relationship between corporate association and consumer's product purchase. In addition, to ensure the external validity of the study will be needed to use realistic company, not artificial.

  • PDF