• Title/Summary/Keyword: Square mean of error

Search Result 2,199, Processing Time 0.026 seconds

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

Long-term forecasting reference evapotranspiration using statistically predicted temperature information (통계적 기온예측정보를 활용한 기준증발산량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1243-1254
    • /
    • 2021
  • For water resources operation or agricultural water management, it is important to accurately predict evapotranspiration for a long-term future over a seasonal or monthly basis. In this study, reference evapotranspiration forecast (up to 12 months in advance) was performed using statistically predicted monthly temperatures and temperature-based Hamon method for the Han River basin. First, the daily maximum and minimum temperature data for 15 meterological stations in the basin were derived by spatial-temporal downscaling the monthly temperature forecasts. The results of goodness-of-fit test for the downscaled temperature data at each site showed that the percent bias (PBIAS) ranged from 1.3 to 6.9%, the ratio of the root mean square error to the standard deviation of the observations (RSR) ranged from 0.22 to 0.27, the Nash-Sutcliffe efficiency (NSE) ranged from 0.93 to 0.95, and the Pearson correlation coefficient (r) ranged from 0.97 to 0.98 for the monthly average daily maximum temperature. And for the monthly average daily minimum temperature, PBIAS was 7.8 to 44.7%, RSR was 0.21 to 0.25, NSE was 0.94 to 0.96, and r was 0.98 to 0.99. The difference by site was not large, and the downscaled results were similar to the observations. In the results of comparing the forecasted reference evapotranspiration calculated using the downscaled data with the observed values for the entire region, PBIAS was 2.2 to 5.4%, RSR was 0.21 to 0.28, NSE was 0.92 to 0.96, and r was 0.96 to 0.98, indicating a very high fit. Due to the characteristics of the statistical models and uncertainty in the downscaling process, the predicted reference evapotranspiration may slightly deviate from the observed value in some periods when temperatures completely different from the past are observed. However, considering that it is a forecast result for the future period, it will be sufficiently useful as information for the evaluation or operation of water resources in the future.

Development of a Predictive Model Describing the Growth of Listeria Monocytogenes in Fresh Cut Vegetable (샐러드용 신선 채소에서의 Listerio monocytogenes 성장예측모델 개발)

  • Cho, Joon-Il;Lee, Soon-Ho;Lim, Ji-Su;Kwak, Hyo-Sun;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • In this study, predictive mathematical models were developed to predict the kinetics of Listeria monocytogenes growth in the mixed fresh-cut vegetables, which is the most popular ready-to-eat food in the world, as a function of temperature (4, 10, 20 and $30^{\circ}C$). At the specified storage temperatures, the primary growth curve fit well ($r^2$=0.916~0.981) with a Gompertz and Baranyi equation to determine the specific growth rate (SGR). The Polynomial model for natural logarithm transformation of the SGR as a function of temperature was obtained by nonlinear regression (Prism, version 4.0, GraphPad Software). As the storage temperature decreased from $30^{\circ}C$ to $4^{\circ}C$, the SGR decreased, respectively. Polynomial model was identified as appropriate secondary model for SGR on the basis of most statistical indices such as mean square error (MSE=0.002718 by Gompertz, 0.055186 by Baranyi), bias factor (Bf=1.050084 by Gompertz, 1.931472 by Baranyi) and accuracy factor (Af=1.160767 by Gompertz, 2.137181 by Baranyi). Results indicate L. monocytogenes growth was affected by temperature mainly, and equation was developed by Gompertz model (-0.1606+$0.0574^*Temp$+$0.0009^*Temp^*Temp$) was more effective than equation was developed by Baranyi model (0.3502-$0.0496^*Temp$+$0.0022^*Temp^*Temp$) for specific growth rate prediction of L.monocytogenes in the mixed fresh-cut vegetables.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.

Seasonal Variation of Thermal Effluents Dispersion from Kori Nuclear Power Plant Derived from Satellite Data (위성영상을 이용한 고리원자력발전소 온배수 확산의 계절변동)

  • Ahn, Ji-Suk;Kim, Sang-Woo;Park, Myung-Hee;Hwang, Jae-Dong;Lim, Jin-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.52-68
    • /
    • 2014
  • In this study, we investigated the seasonal variation of SST(Sea Surface Temperature) and thermal effluents estimated by using Landsat-7 ETM+ around the Kori Nuclear Power Plant for 10 years(2000~2010). Also, we analyzed the direction and range of thermal effluents dispersion by the tidal current and tide. The results are as follows, First, we figured out the algorithm to estimate SST through the linear regression analysis of Landsat DN(Digital Number) and NOAA SST. And then, the SST was verified by compared with the in situ measurement and NOAA SST. The determination coefficient is 0.97 and root mean square error is $1.05{\sim}1.24^{\circ}C$. Second, the SST distribution of Landsat-7 estimated by linear regression equation showed $12{\sim}13^{\circ}C$ in winter, $13{\sim}19^{\circ}C$ in spring, and $24{\sim}29^{\circ}C$ and $16{\sim}24^{\circ}C$ in summer and fall. The difference of between SST and thermal effluents temperature is $6{\sim}8^{\circ}C$ except for the summer season. The difference of SST is up to $2^{\circ}C$ in August. There is hardly any dispersion of thermal effluents in August. When it comes to the spread range of thermal effluents, the rise range of more than $1^{\circ}C$ in the sea surface temperature showed up to 7.56km from east to west and 8.43km from north to south. The maximum spread area was $11.65km^2$. It is expected that the findings of this study will be used as the foundational data for marine environment monitoring on the area around the nuclear power plant.

Development of Optimum Traffic Safety Evaluation Model Using the Back-Propagation Algorithm (역전파 알고리즘을 이용한 최적의 교통안전 평가 모형개발)

  • Kim, Joong-Hyo;Kwon, Sung-Dae;Hong, Jeong-Pyo;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.679-690
    • /
    • 2015
  • The need to remove the cause of traffic accidents by improving the engineering system for a vehicle and the road in order to minimize the accident hazard. This is likely to cause traffic accident continue to take a large and significant social cost and time to improve the reliability and efficiency of this generally poor road, thereby generating a lot of damage to the national traffic accident caused by improper environmental factors. In order to minimize damage from traffic accidents, the cause of accidents must be eliminated through technological improvements of vehicles and road systems. Generally, it is highly probable that traffic accident occurs more often on roads that lack safety measures, and can only be improved with tremendous time and costs. In particular, traffic accidents at intersections are on the rise due to inappropriate environmental factors, and are causing great losses for the nation as a whole. This study aims to present safety countermeasures against the cause of accidents by developing an intersection Traffic safety evaluation model. It will also diagnose vulnerable traffic points through BPA (Back -propagation algorithm) among artificial neural networks recently investigated in the area of artificial intelligence. Furthermore, it aims to pursue a more efficient traffic safety improvement project in terms of operating signalized intersections and establishing traffic safety policies. As a result of conducting this study, the mean square error approximate between the predicted values and actual measured values of traffic accidents derived from the BPA is estimated to be 3.89. It appeared that the BPA appeared to have excellent traffic safety evaluating abilities compared to the multiple regression model. In other words, The BPA can be effectively utilized in diagnosing and practical establishing transportation policy in the safety of actual signalized intersections.

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.