• Title/Summary/Keyword: Square manhole

Search Result 17, Processing Time 0.02 seconds

An Analysis of Flow Characteristics with Changing the Inside Shapes in Square Manhole (직사각형 맨홀의 내부형상변화에 따른 흐름특성 분석)

  • Jang, Suk-Jin;Yoon, Young-Noh;Kim, Jung-Soo;Yoon, Sei-Eui
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.199-202
    • /
    • 2007
  • In storm sewer networks a lot of manholes are installed to maintain and connect a sewer of urban area. There are some shapes of manhole such as circular type, square type, and so on. Square shape manholes are installed to connect the large diameter drainage pipes in general and have lager head losses than circular one. Consequently, it is important to analyze the head losses in square manhole because the head losses in square manhole are much bigger than the friction losses in pipes. Hydraulic experimental apparatus which can be changed the inside shape in square manhole was installed for this study. The experimental discharge was $16{\ell}/sec$. The head loss coefficients in the manhole were calculated by the experimental results. The range of head loss coefficients in the general square manhole were from 0.33 to 0.48 and the range of head loss coefficients in the square manhole changed inside shape were from 0.23 to 0.28.

  • PDF

An Experimental Study for Drainage Capacity Increment at Surcharged Manholes with a 90° Bend (과부하 90° 접합맨홀의 배수능력 증대에 관한 실험 연구)

  • Kim, Jung Soo;Song, Ju Il;Yoon, Sei Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.447-458
    • /
    • 2009
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban areas. Therefore, it is necessary to analyze head loss at manholes, especially in case of surcharged flow. Hydraulic experiments were conducted with three cases. Case A is to test whether the shapes of the manholes influence head loss coefficients. Case B and C were proposed to further reduce head losses by improving the manhole hydraulic efficiency. In case B, the joining part of the pipe at both shapes of manholes is shifted from central part to side part. The test in case C is to check the average head loss coefficient by installing the side benching in square manhole, based on shifted joining part model. The average head loss coefficient for circular and square manhole on case A was 1.6. This did not show much difference of the head loss coefficients in spite of the discharge variation in this case. However, case B and C show large difference between head loss coefficients due to the strong oscillation of water surface and the horizontal swirl motion. The circular and square manholes in case B reduced the head loss by 30% and 6% than ones in case A, respectively. The average head loss coefficient for circular manhole in case B was 1.1. Case C reduced average loss coefficients of the square manhole in case A from 1.6 to 1.1. Accordingly, the circular manhole in case B and the square manhole in case C showed the effective way to reduce the head loss. These head loss coefficients could be available to apply to the urban sewer system with surcharged flow.

An Experimental Study for Drainage Capacity Increment at Surcharged Square Manholes (과부하 사각형 맨홀의 배수능력 증대에 관한 실험적 연구)

  • Kim, Jung Soo;Song, Ju Il;Yoon, Sei Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.619-625
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at square manholes is usually not significant. However, the energy loss at surcharged manholes is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharged flow. Hydraulic experimental apparatus which can change the manhole inner profile(CASE I, II, III, and IV) and the invert types(CASE A, B, C) were installed for this study. The experimental discharge was $16{\ell}/sec$. As the ratio of b/D(manhole width/inflow pipe diameter) increases, head loss coefficient increases due to strong horizontal swirl motion. The head loss coefficients for CASE I, II, III, and IV were 0.46, 0.38, 0.28 and 0.37, respectively. Side covers increase considerably drainage capacity at surcharged square manhole when the ratio of d/D(side cover diameter/inflow pipe diameter) was 1.0. The head loss coefficients for CASE A, B, and C were 0.45, 0.37, and 0.30, respectively. Accordingly, U-invert is the most effective for energy loss reduction at surcharged square manhole. This head loss coefficients could be available to evaluate the urban sewer system with surcharged flow.

Development of head loss coefficient formula at surcharged four-way combining square manhole with variation of inlet flow (유입유량 변화를 고려한 과부하 4방향 사각형 합류맨홀에서의 손실계수 산정식 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.877-887
    • /
    • 2017
  • The energy losses due to surcharged flow at four-way combining manhole, which is mainly installed in the downstream of urban sewer system, is the main cause of inundation in urban area. Surcharged four-way combining manholes form various flow configuration such as straight through, T-type, and four-way manholes depending on variation of inflow discharge in inlet pipes. Therefore, it is necessary to analyze change of energy loss and estimate head loss coefficients at surcharged four-way combining manhole with variation of inflow discharge ratio. The hydraulic experimental apparatus which can change inflow ratios were installed to analyze the flow characteristics at four-way combining manhole. In this study, to calculate the head loss coefficient according to change of the inflow discharge ratios at the surcharged four-way combining square manhole, the discharge conditions of 40 cases which the inflow ratios of each inlet pipe were changed by 10% interval was selected. The head loss coefficient at surcharged square manhole showed the lowest value of 0.40 at the straight manhole and the highest value of 1.58 at the $90^{\circ}$ junction manhole. In the combining manholes (T-type and four-way), the head loss coefficients were calculated more higher as the lateral flow rate was biased. The contour map of head loss coefficient range was constructed by using the estimated head loss coefficients and the empirical formula of head loss coefficients was derived to consider the variation of inflow discharge ratios at the surcharged square manhole. The empirical formula could be applied to the design and assessment of the urban drainage system.

Estimation of Head Loss Coefficients at Surcharged Square Manhole Using Numerical Model (수치모형을 이용한 과부하 사각형 맨홀에서의 손실계수 산정)

  • Kim, Jung-Soo;Lim, Ga-Hui;Rim, Chang-Soo;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2011
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is important to analyze the head losses at manholes, especially in case of surcharged flow. The stream characteristics were analyzed and head loss coefficients were estimated by using the computational fluid dynamics(CFD) model, FLUENT 6.3, at surcharged square manhole in this study. The CFD model was carefully assessed by comparing simulated results with the experimental ones. The study results indicate that there was good agreement between simulation model and experiment. The CFD model was proved to be capable of estimating the head loss coefficients at surcharged manholes. The head loss coefficients with variation of the ratio of manhole width(B) to inflow pipe diameter(d) and variation of the drop height at surcharged square manhole with a straight-path through were calculated using FLUENT 6.3. As the ratio of B/d increases, head loss coefficient increases. The depth and head loss coefficient at manhole were gradually increased when the drop height was more than 5cm. Therefore, the CFD model(Fluent 6.3) might be used as a tool to simulate the water depth, energy losses, and velocity distribution at surcharged square manhole.

An Experimental Study for Reduction of Energy losses at Surcharged Four-way Combining Square Manhole (과부하 4방향 사각형 합류맨홀에서의 에너지 손실 저감을 위한 실험 연구)

  • Kim, Jung Soo;Kim, Chae Rin;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.311-324
    • /
    • 2017
  • Energy loss at manholes under surcharged flow is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the flow characteristics to reduce the energy loss in the surcharged four-way combining manhole. In this study, hydraulic experimental apparatus was constructed considering the results of the present survey. Square manholes and pipe diameters were reduced to 1/5 by applying sewer facility standards. Numerical simulations were carried out with the Fluent 6.3 model to derive the invert condition which can reduce the energy loss in the surcharged four-way combining square manhole. The hydraulic experiments were carried out according to the various conditions of the lateral flow rate($Q_{lat}/Q_{out}$), discharge of outflow pipe (2.0, 3.0, 4.0, 4.8 l/sec), and invert shape (rectangle and square open conduit type). The crossed invert was not found to improve the drainage capacity of the surcharged four-way rectangular combining manhole. However, the improved rectangle open conduit type invert and square open conduit type invert were analyzed to improve the drainage capacity by reducing the head loss coefficients by about 8% and 28%, respectively. Therefore, in order to increase the drainage capacity of urban facilities, it is possible to install and use the improved invert proposed in this study.

Analysis and Suggestion of Estimation Equation for Sedimentation in Square Manholes with Straight Path (사각형 중간맨홀에서의 유사 퇴적 분석 및 산정식 제안)

  • Kim, Jung-Soo;Song Ju-Il;Rim Chang-Soo;Yoon, Sei-Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.177-189
    • /
    • 2012
  • Sediment load deposited in sewers and manholes reduces not only the capacity of pipes but also the efficiency of the whole sewer system. This causes the inundations of the low places and overflows at manholes, Moreover, sulfides and bad odor can occur due to deposited sediment with organic loads in manholes. Movements of sediment load in manholes are complicated depending on manhole size, location, inside structure, sediment load type, and time. Therefore, it is necessary to understand the movements of sediment load in manholes by experiments. In this study, experiments were implemented by a square manhole with straight path to measure deposited sedimentation quantity. The experimental apparatus was consisted of a high water tank, an upstream tank, test pipes, a sediment supplier, a manhole, and a downstream tank to measure the experimental discharge. The quantity of deposited sediment load was measured by different conditions, such as the inflow condition of sediment(continuous and certain period), the amount of inflow sediment, discharge, and the type of sediment. Jumoonjin sand(S=2.63, D50=0.55mm), general sand(GS, S=2.65, D50=1.83mm) and anthracite (S=1.45, D50=0.80mm) were employed for the experiment. The velocities in inflow pipe were 0.45 m/s, 0.67 m/s, and 0.9 m/s. Sediment load movement and sedimentation quantity in manhole were influenced by many factors such as velocity, shear stress, viscosity, amount of sediment, sediment size, and specific gravity. Suggested regression equations can estimated the quantity of deposited sediment in the straight path square manholes. The connoted equations that were evaluated through the experimental study have velocity range from 0.45 to 0.9m/sec. The study results illustrates that appropriation of design velocity ragne between 1.0 and 2.0m/sec could implement to maintain and manage manholes.

An experimental study for estimation of head loss coefficients at surcharged four-way combining manholes (과부하 4방향 합류맨홀에서의 손실계수 산정을 위한 실험 연구)

  • Ryu, Taek Hee;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.1015-1025
    • /
    • 2016
  • In general, manholes installed as urban drainage facilities are a variety forms such as straight path manholes, 90 degree bend manhole, three-way combining manhole, and four-way combining manhole. In particular, the surcharged flow at a four-way manholes installed in the downstream of urban sewer system is the main cause of the urban inundation caused by the energy loss. Therefore, it is necessary to analyze the flow characteristics and estimate the head loss coefficients at surcharged four-way combining manholes. The hydraulic experimental apparatus which can change the manhole shapes (square, circle) and flow ratios were installed to estimate the head loss coefficients. In the experiments, two inflows ($Q_m$, $Q_{lat}$) were varied from 0 to $4.8{\ell}/sec$ and 24 combinations were tested in total. The flow ratios $Q_{lat}/Q_{out}$ were varied from 0 to 1 for a total flow $Q_{out}$ ($Q_{out}=Q_m+2Q_{lat}$) of 2, 3, 4, and $4.8{\ell}/sec$, respectively. The variation of head losses were strongly influenced by the lateral inflow because the head loss coefficient increases as the flow ratios $Q_{lat}/Q_{out}$ increases. It was estimated head loss coefficients of the circular manhole is slightly lower than those of the square manhole. However, there was no significant difference of head loss as discharges change. The range of head loss coefficients at four-way combining manhole according to the change of the lateral inflow ratio was estimated to be 0.4 to 0.8. Also, the relation equations between the head loss coefficients (K) and the lateral inflow ratios ($Q_{lat}/Q_{out}$) were suggested in this paper.

An Experimental Study for Reduction of Sedimentation Deposit in Combining Junction Manholes (합류맨홀에서의 유사퇴적 저감을 위한 실험적 연구)

  • Kim, Jung-Soo;Kim, Kyoung-Beom;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.767-782
    • /
    • 2012
  • Accumulation of sediment within pipelines, manholes, and other components of urban sewer systems can have a bad influence on sewerage arrangements, such as the resistance of the passage of flows, the cause of urban flooding and the premature operation of combined sewer overflows, and the inevitable pollution of watercourses. Therefore, it is necessary to understand the movements and sedimentation of sediment loads in combining junction manholes by experiments. In this study, hydraulic experimental apparatus which can change the manhole shapes (square, circle) were installed to measure deposited sedimentation quantity. The quantity of deposited sediment loads was measured by different conditions, for instance, the inflow conditions of sediment (continuous and certain period), the amount of inflow sediment, and the variation of inflow pipe of sediment. The combining junction manhole that was set up a inclined benching have the considerable effect of reduction of sedimentation in manholes without apropos of the change of manhole shapes. Therefore, the improved manhole could be increased the drainage capacity of sewerage arrangements in urban sewer systems.

Inundation Analysis in Urban Area Considering of Head Loss Coefficients at Surcharged Manholes (과부하 맨홀의 손실계수를 고려한 도시지역 침수해석)

  • Lee, Won;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • In general, XP-SWMM regards manholes as nodes, so it can not consider local head loss in surcharged manhole depending on shape and size of the manhole. That might be a reason why XP-SWMM underestimates inundated-area compared with reality. Therefore, it is necessary to study how we put the local head loss in surcharged manhole in order to simulate storm drain system with XP-SWMM. In this study, average head loss coefficients at circular and square manhole were estimated as 0.61 and 0.68 respectively through hydraulic experiments with various discharges. The estimated average head loss coefficients were put into XP-SWMM as inflow and outflow energy loss of nodes to simulate inundation area of Gunja basin. Simulated results show that not only overflow discharge amount but inundated-area increased considering the head loss coefficients. Also, inundation area with considering head loss coefficients was matched as much as 58% on real inundation area. That was more than simulated results without considering head loss coefficients as much as 18 %. Considering energy loss in surcharged manholes increases an accuracy of simulation. Therefore, the averaged head loss coefficients of this study could be used to simulate storm drain system. It was expected that the study results will be utilized as basic data for establishing the identification of the inundation risk area.