• Title/Summary/Keyword: Square footing

Search Result 24, Processing Time 0.019 seconds

Cuboidal Infinite Elements for Soil-Structure-Interaction Analysis in Multi-Layered Half-Space (3차원 지반-구조물 상호작용해석을 위한 입방형 무한요소)

  • Seo, Choon-Gyo;Yun, Chung-Bang;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.39-50
    • /
    • 2007
  • This paper presents 3D infinite elements for the elastodynamic problem with multi-layered half-space. Five different types of infinite elements are formulated by using approximate expressions of multiple wave components for the wave function in multi-layered soil media. They are horizontal, horizontal-corner, vortical, vertical-corner and vertical-horizontal-comer infinite elements. The elements can effectively be used for simulating wane radiation problems with multiple wave components. Numerical example analyses are presented for rigid disk, square footings and embedded footing on homogeneous and layered half-space. The numerical results show the effectiveness of the proposed infinite elements.

A Study on the Ancient Architecture in view of the Stone Remains (focused on the 3 Kingdom Period and Unificated Shilla Period) (석조유구(石造遺構)를 통한 한국(韓國) 고대건축(古代建築)에 관한 연구(硏究) -삼국시대와 통일신라시대를 중심으로-)

  • Cheon, Deuk-Youm;Park, Ji-Min
    • Journal of architectural history
    • /
    • v.8 no.3 s.20
    • /
    • pp.23-38
    • /
    • 1999
  • The purpose of this study is to analogize the appearance of Korean Ancient Architecture in view of the Stone Remains from 3 Kingdom Period to Unificated Shilla Period. But in these period, there is no building remains but some stupas and fine arts. Especially, there are many architectural appearance and revealing signature in these Historical Stone remains. Architectural elements which are analogized by stone remains what has value as historical materials by preservation of original form from 3 Kingdom Preiod to Unificated Shilla Period are as follows : 1) Platform, the representative characteristic of Korean traditional architecture, was frame structure and accumulate structure. And circular or square footing stood a same shape column on it is put on the platform. 2) In the case of column, there used entasis column and inclined column and circular chamfer technique was applied on the top side of it. Upper side of column, capital and head pentrating tie that small bearing block was put on the center of it was joined. And longitu야nal rest(長舌) supported a cross beam. Capital and small bearing block had no bottom heel, and heel side was curved and straight. Centered bracket structure was often used, and multi bracket structure is not used yet. Inward incline technique was used. 3) Inward opening pair door which had lintel, threshold, doorjamb was usually used, Fixing stone was used for structural safety, and circular handle and lock was used for decoration. Handrail was used on the edge of wooden floor for decorative effect and safety. 4) Square rafter and circular rafter were used in the same period and so did flying rafter. Double eaves and single eave were used in the same period but, single eave was usually used. In this period, square rafter was usually used. This would be studied more by comparing with Japanese wooden architecture. 5) Hipped roof was used and half-hipped roof was not used yet. In front of th hip, there are small sculpture called Jap-Sang(雜像), and windbell was hang on the end of the hip rafter. Concave roof tile, convex roof tile, round eaver tile, decorative tile at end of roof ridge were used. Lotus style was well used on the face of roof tile for decoration. From the results of this study, wooden architecture of Unificated Shilla period was simple compare to Koryo dynasty and Chosun dynasty but, it had some brilliant character. It was hard work that analogized the form of non-existent wood architecture of Ancient Korean period by restricted stone remains. But, in addition to the results of this study and research of old documentations, more study should be go on.

  • PDF

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

Characteristics of Bearing Capacity under Square Footing on Two-layered Sand (2개층 사질토지반에서 정방형 기초의 지지력 특성)

  • 김병탁;김영수;이종현
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.289-299
    • /
    • 2001
  • 본 연구는 균질 및 2개층 비균질지반에서 사질토지반 상에 놓인 정방형 기초의 극한지지력과 침하에 대하여 고찰하였다. 본 연구는 얕은기초의 거동에 대한 정방형 기초의 크기, 지반 상대밀도, 기초 폭에 대한 상부층의 두께 비(H/B), 상부층 아래 경계면의 경사($\theta$) 그리고 지반강성비의 영향을 규명하기 위하여 모형실험을 수행하였다. 동일 상대밀도에서 지지력 계수($N_{{\gamma}}$)는 일정하지 않으며 기초 폭에 직접적으로 관련되며 지지력계수는 기초 폭이 증가함에 따라 감소하였다. 기초크기의 영향과 구속압력의 영향을 고려하는 Ueno 방법에 의한 극한지지력의 예측값은 고전적인 지지력 산정식보다 더 잘 일치하며 그 값은 실험값의 65% 이상으로 나타났다. $\theta$=$0^{\circ}$인 2개층 지반의 결과에 근거하여, 극한지지력에 대한 하부층 지반의 영향을 무시할 수 있는 한계 상부층 두께는 기초 폭의 2배로 결정되었다. 그러나, 73%의 상부층 상대밀도인 경우는 침하비($\delta$B) 0.05 이하에서만 이 결과가 유효하였다. 경계면이 경사진 2개층 지반의 결과에 근거하여, 상부층의 상대밀도가 느슨할수록 그리고 상부층의 두께가 클수록 극한지지력에 대한 경계면 경사의 영향은 크지 않는 것으로 나타났다. 경계면의 경사가 증가함에 따른 극한침하량의 변화는 경계면이 수평인 경우($\theta$=$0^{\circ}$)를 기준으로 0.82~1.2(상부층 $D_{r}$=73%인 경우) 그리고 0.9~1.07(상부층 $D_{r}$=50%인 경우) 정도로 나타났다.Markup Language 문서로부터 무선 마크업 언어 문서로 자동 변환된 텍스트를 인코딩하는 경우와 같이 특정한 응용 분야에서는 일반 문자열에 대한 확장 인코딩 기법을 적용할 필요가 있을 수 있다.mical etch-stop method for the etching of Si in TMAH:IPA;pyrazine solutions provides a powerful and versatile alternative process for fabricating high-yield Si micro-membranes. the RSC circle, but also to the logistics system in the SLC circle. Thus, the RSLC model can maximize combat synergy effects by integrating the RSC and the SLC. With a similar logic, this paper develops "A Revised System of Systems with Logistics (RSSL)" which combines "A New system of Systems" and logistics. These tow models proposed here help explain several issues such as logistics environment in future warfare, MOE(Measure of Effectiveness( on logistics performance, and COA(Course of Actions) for decreasing mass and increasing velocity. In particular, velocity in logistics is emphasized.

  • PDF