• Title/Summary/Keyword: Square Root

Search Result 2,665, Processing Time 0.037 seconds

Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain (PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증)

  • Myeong-Ju, Choi;Joong-Bae, Ahn;Young-Hyun, Kim;Min-Kyung, Jung;Kyo-Moon, Shim;Jina, Hur;Sera, Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.218-233
    • /
    • 2022
  • The long-term (1986~2020) predictability of the number of days of heat and cold damages for each growth stage of soybean is evaluated using the daily maximum and minimum temperature (Tmax and Tmin) data produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF). The Predictability evaluation methods for the number of days of damages are Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), and Heidke Skill Score (HSS). First, we verified the simulation performance of the Tmax and Tmin, which are the variables that define the heat and cold damages of soybean. As a result, although there are some differences depending on the month starting with initial conditions from January (01RUN) to May (05RUN), the result after a systematic bias correction by the Variance Scaling method is similar to the observation compared to the bias-uncorrected one. The simulation performance for correction Tmax and Tmin from March to October is overall high in the results (ENS) averaged by applying the Simple Composite Method (SCM) from 01RUN to 05RUN. In addition, the model well simulates the regional patterns and characteristics of the number of days of heat and cold damages by according to the growth stages of soybean, compared with observations. In ENS, HR and HSS for heat damage (cold damage) of soybean have ranged from 0.45~0.75, 0.02~0.10 (0.49~0.76, -0.04~0.11) during each growth stage. In conclusion, 01RUN~05RUN and ENS of PNU CGCM-WRF Chain have the reasonable performance to predict heat and cold damages for each growth stage of soybean in South Korea.

Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network (심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구)

  • Taeyoon Eom;Kwangnyun Kim;Yonghan Jo;Keunyong Song;Yunjeong Lee;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2023
  • This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22℃ showed great performance than the baseline model with RMSE 3.55℃ on clear sky conditions and the total RMSE including overcast samples was 3.33℃. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.

A Study on Domestic Applicability for the Korean Cosmic-Ray Soil Moisture Observing System (한국형 코즈믹 레이 토양수분 관측 시스템을 위한 국내 적용성 연구)

  • Jaehwan Jeong;Seongkeun Cho;Seulchan Lee;Kiyoung Kim;Yongjun Lee;Chung Dae Lee;Sinjae Lee;Minha Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • In terms of understanding the water cycle and efficient water resource management, the importance of soil moisture has been highlighted. However, in Korea, the lack of qualified in-situ soil moisture data results in very limited utility. Even if satellite-based data are applied, the absence of ground reference data makes objective evaluation and correction difficult. The cosmic-ray neutron probe (CRNP) can play a key role in producing data for satellite data calibration. The installation of CRNP is non-invasive, minimizing damage to the soil and vegetation environment, and has the advantage of having a spatial representative for the intermediate scale. These characteristics are advantageous to establish an observation network in Korea which has lots of mountainous areas with dense vegetation. Therefore, this study was conducted to evaluate the applicability of the CRNP soil moisture observatory in Korea as part of the establishment of a Korean cOsmic-ray Soil Moisture Observing System (KOSMOS). The CRNP observation station was installed with the Gunup-ri observation station, considering the ease of securing power and installation sites and the efficient use of other hydro-meteorological factors. In order to evaluate the CRNP soil moisture data, 12 additional in-situ soil moisture sensors were installed, and spatial representativeness was evaluated through a temporal stability analysis. The neutrons generated by CRNP were found to be about 1,087 counts per hour on average, which was lower than that of the Solmacheon observation station, indicating that the Hongcheon observation station has a more humid environment. Soil moisture was estimated through neutron correction and early-stage calibration of the observed neutron data. The CRNP soil moisture data showed a high correlation with r=0.82 and high accuracy with root mean square error=0.02 m3/m3 in validation with in-situ data, even in a short calibration period. It is expected that higher quality soil moisture data production with greater accuracy will be possible after recalibration with the accumulation of annual data reflecting seasonal patterns. These results, together with previous studies that verified the excellence of CRNP soil moisture data, suggest that high-quality soil moisture data can be produced when constructing KOSMOS.

Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors (머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정)

  • Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.655-667
    • /
    • 2023
  • Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.

Estimation of the Surface Currents using Mean Dynamic Topography and Satellite Altimeter Data in the East Sea (평균역학고도장과 인공위성고도계 자료를 이용한 동해 표층해류 추산)

  • Lee, Sang-Hyun;Byun, Do-Seong;Choi, Byoung-Ju;Lee, Eun-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.195-204
    • /
    • 2009
  • In order to estimate sea surface current fields in the East Sea, we examined characteristics of mean dynamic topography (MDT) fields (or mean surface current field, MSC) generated from three different methods. This preliminary investigation evaluates the accuracy of surface currents estimated from satellite-derived sea level anomaly (SLA) data and three MDT fields in the East Sea. AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic data) provides a MDT field derived from satellite observation and numerical models with $0.25^{\circ}$ horizontal resolution. Steric height field relative to 500 dbar from temperature and salinity profiles in the East Sea supplies another MDT field. Trajectory data of surface drifters (ARGOS) in the East Sea for 14 years provide another MSC field. Absolute dynamic topography (ADT) field is calculated by adding SLA to each MDT. Application of geostrophic equation to three different ADT fields yields three surface geostrophic current fields. Comparisons were made between the estimated surface currents from the three different methods and in-situ current measurements from a ship-mounted ADCP (Acoustic Doppler Current Profiler) in the southwestern East Sea in 2005. For offshore areas more than 50 km away from the land, the correlation coefficients (R) between the estimated versus the measured currents range from 0.58 to 0.73, with 17.1 to $21.7\;cm\;s^{-1}$ root mean square deviation (RMSD). For coastal ocean within 50 km from the land, however, R ranges from 0.06 to 0.46 and RMSD ranges from 15.5 to $28.0\;cm\;s^{-1}$. Results from this study reveal that a new approach in producing MDT and SLA is required to improve the accuracy of surface current estimations for the shallow costal zones of the East Sea.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

Validation of ECOSTRESS Based Land Surface Temperature and Evapotranspiration (PT-JPL) Data Across Korea (국내에서 ECOSTRESS 지표면 온도 및 증발산(PT-JPL) 자료의 검증)

  • Park, Ki Jin;Kim, Ki Young;Kim, Chan Young;Park, Jong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.637-648
    • /
    • 2024
  • The frequency of extreme weather events such as heavy and extreme rainfall has been increasing due to global climate change. Accordingly, it is essential to quantify hydrometeorological variables for efficient water resource management. Among the various hydro-meteorological variables, Land Surface Temperature (LST) and Evapotranspiration (ET) play key roles in understanding the interaction between the surface and the atmosphere. In Korea, LST and ET are mainly observed through ground-based stations, which also have limitation in obtaining data from ungauged watersheds, and thus, it hinders to estimate spatial behavior of LST and ET. Alternatively, remote sensing-based methods have been used to overcome the limitation of ground-based stations. In this study, we evaluated the applicability of the National Aeronautics and Space Administration's (NASA) ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST and ET data estimated across Korea (from July 1, 2018 to December 31, 2022). For validation, we utilized NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data and eddy covariance flux tower observations managed by agencies under the Ministry of Environment of South Korea. Overall, results indicated that ECOSTRESS-based LSTs showed similar temporal trends (R: 0.47~0.73) to MODIS and ground-based observations. The index of agreement also showed a good agreement of ECOSTRESS-based LST with reference datasets (ranging from 0.82 to 0.91), although it also revealed distinctive uncertainties depending on the season. The ECOSTRESS-based ET demonstrated the capability to capture the temporal trends observed in MODIS and ground-based ET data, but higher Mean Absolute Error and Root Mean Square Error were also exhibited. This is likely due to the low acquisition rate of the ECOSTRESS data and environmental factors such as cooling effect of evapotranspiration, overestimation during the morning. This study suggests conducting additional validation of ECOSTRESS-based LST and ET, particularly in topographical and hydrological aspects. Such validation efforts could enhance the practical application of ECOSTRESS for estimating basin-scale LST and ET in Korea.

Prediction of Growth of Escherichia coli O157 : H7 in Lettuce Treated with Alkaline Electrolyzed Water at Different Temperatures

  • Ding, Tian;Jin, Yong-Guo;Rahman, S.M.E.;Kim, Jai-Moung;Choi, Kang-Hyun;Choi, Gye-Sun;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • This study was conducted to develop a model for describing the effect of storage temperature (4, 10, 15, 20, 25, 30 and $35^{\circ}C$) on the growth of Escherichia coli O157 : H7 in ready-to-eat (RTE) lettuce treated with or without (control) alkaline electrolyzed water (AIEW). The growth curves were well fitted with the Gompertz equation, which was used to determine the specific growth rate (SGR) and lag time (LT) of E. coli O157 : H7 ($R^2$ = 0.994). Results showed that the obtained SGR and LT were dependent on the storage temperature. The growth rate increased with increasing temperature from 4 to $35^{\circ}C$. The square root models were used to evaluate the effect of storage temperature on the growth of E. coli O157 : H7 in lettuce samples treated without or with AIEW. The coefficient of determination ($R^2$), adjusted determination coefficient ($R^2_{Adj}$), and mean square error (MSE) were employed to validate the established models. It showed that $R^2$ and $R^_{Adj}$ were close to 1 (> 0.93), and MSE calculated from models of untreated and treated lettuce were 0.031 and 0.025, respectively. The results demonstrated that the overall predictions of the growth of E. coli O157: H7 agreed with the observed data.

Evaluating the prediction models of leaf wetness duration for citrus orchards in Jeju, South Korea (제주 감귤 과수원에서의 이슬지속시간 예측 모델 평가)

  • Park, Jun Sang;Seo, Yun Am;Kim, Kyu Rang;Ha, Jong-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.3
    • /
    • pp.262-276
    • /
    • 2018
  • Models to predict Leaf Wetness Duration (LWD) were evaluated using the observed meteorological and dew data at the 11 citrus orchards in Jeju, South Korea from 2016 to 2017. The sensitivity and the prediction accuracy were evaluated with four models (i.e., Number of Hours of Relative Humidity (NHRH), Classification And Regression Tree/Stepwise Linear Discriminant (CART/SLD), Penman-Monteith (PM), Deep-learning Neural Network (DNN)). The sensitivity of models was evaluated with rainfall and seasonal changes. When the data in rainy days were excluded from the whole data set, the LWD models had smaller average error (Root Mean Square Error (RMSE) about 1.5hours). The seasonal error of the DNN model had the similar magnitude (RMSE about 3 hours) among all seasons excluding winter. The other models had the greatest error in summer (RMSE about 9.6 hours) and the lowest error in winter (RMSE about 3.3 hours). These models were also evaluated by the statistical error analysis method and the regression analysis method of mean squared deviation. The DNN model had the best performance by statistical error whereas the CART/SLD model had the worst prediction accuracy. The Mean Square Deviation (MSD) is a method of analyzing the linearity of a model with three components: squared bias (SB), nonunity slope (NU), and lack of correlation (LC). Better model performance was determined by lower SB and LC and higher NU. The results of MSD analysis indicated that the DNN model would provide the best performance and followed by the PM, the NHRH and the CART/SLD in order. This result suggested that the machine learning model would be useful to improve the accuracy of agricultural information using meteorological data.

A Structural Equation Modeling on Quality of Social Roles and Health for Married Working Mothers (유배우 취업모의 사회적 역할의 질과 건강에 대한 구조모형)

  • Park, Eun-Ok
    • Research in Community and Public Health Nursing
    • /
    • v.12 no.2
    • /
    • pp.450-458
    • /
    • 2001
  • Purpose: The purpose of this study was to establish a structural equation model on social roles and health for married working mothers. to determine the effects of social roles on Korean women's health and to explore the mediating role of self-esteem in the relationship between social roles qualities and health. Method Data were collected from 323 employed women with partner and children. lived in Seoul and near Seoul. Response rate was 62.3%. The instruments for measurements were Role Quality Scale developed by Park et al. (1999). Rosenberg's Self-Esteem Scale. and 31 items from SF-36 developed by Ware & Sherboune(l992). Results: The effect of marital role quality on self-esteem and the effect of parental role quality on health were not significant. Modification model fitted with the collected data very well. as evidenced by the small chi-square(0.58), the very high goodness-of-fit(GFI = 1.00), and adjusted goodness-of-fit (AGFI = 0.99), and very small root mean square residual(RMSR=0.0072), and the slope of Q-plot is over 1. 41% of the variance in self-esteem and 21% of the variance in health were accounted for by these variables. Conclusion: Further research concerned with the mediating effects of self-esteem in the role and health relationship should be covered the issue of various role combinations. And it is necessary to examine the influence of subfactor of quality of social roles on health.

  • PDF