• Title/Summary/Keyword: Square Cylinder

Search Result 206, Processing Time 0.022 seconds

NUMERICAL SIMULATION OF FLOW PAST A SQUARE CYLINDER SUBMERGED UNDER THE FREE SURFACE (자유수면 아래 정방형 실린더 후류 유동에 관한 수치해석적 연구)

  • Ahn, Hyungsu;Yang, Kyung-Soo;Park, Doohyun
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.51-57
    • /
    • 2015
  • In the present study, two-dimensional numerical investigation of flow past a square cylinder beneath the free surface has been performed to identify the effects of presence of the free surface. An immersed boundary method was adopted for implementation of the cylinder cross-section in a Cartesian grid system. Also, a level-set method was used to capture the interface of two fluids. To prevent transition to three-dimensional flow, Reynolds number chosen for this simulation was 150. The cases for Froude number 0.2 and gap ratio(h/D) between 0.25 and 5.00 were examined. At the specific Reynolds number, we study the effects of gap ratio on flow characteristics around a square cylinder by computing flow fields, force coefficients and Strouhal number.

Experimental investigation of vortex-induced aeroelastic effects on a square cylinder in uniform flow

  • Huang, Dongmei;Wu, Teng;He, Shiqing
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.37-54
    • /
    • 2020
  • To investigate the motion-induced aeroelastic effects (or aerodynamic feedback effects) on a square cylinder in uniform flow, a series of wind tunnel tests involving the pressure measurement of a rigid model (RM) and simultaneous measurement of the pressure and vibration of an aeroelastic model (AM) have been systematically carried out. More specifically, the aerodynamic feedback effects on the structural responses, on the mean and root-mean-square wind pressures, on the power spectra and coherence functions of wind pressures at selected locations, and on the aerodynamic forces were investigated. The results indicated the vibration in the lock-in range made the shedding vortex more coherent and better organized, and hence presented unfavorable wind-induced effects on the structure. Whereas the vibration in the non-lock-in range generally showed insignificant effects on the flow structures surrounding the square cylinder.

Effective Heat Transfer Using Large Scale Vortices (대와류를 이용한 채널 내 열전달 증진)

  • Yoon, Dong-Hyeog;Choi, Choon-Bum;Lee, Kyong-Jun;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.198-206
    • /
    • 2008
  • A numerical study has been carried out to investigate heat transfer enhancement in channel flow using large-scale vortices. A square cylinder, inclined with respect to the main flow direction, is located at the center of the channel flow, generating a separation region and Karman vortices. Two cases are considered; one with a fixed blockage ratio and the other one with a fixed cylinder size. In both cases, the flow characteristics downstream of the cylinder significantly change depending on the inclination angle. As a result, heat transfer from channel wall is significantly enhanced due to increased vertical-velocity fluctuations induced by the large-scale vortices shed from the cylinder. Quantitative results as well as qualitative physical explanation are presented to justify the effectiveness of the inclined square cylinder as a vortex generator to enhance heat transfer from channel wall.

TURBULENT FLOW AROUND AN INCLINED SQUARE CYLINDER (기울어진 정방형 실린더를 지나는 난류 유동)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.52-58
    • /
    • 2009
  • Turbulent flow past an inclined square cylinder immersed in a cross stream is numerically investigated. The angle of incidence of main flow is one of the key factors determining at which edges the flow separates. In the present study, based on comprehensive numerical simulations, effects of inclination angle on the flow characteristics are elucidated and the related physical explanation is presented.

Flow past a Square Cylinder with an Angle of Attack (기울어진 정방형 실린더에 작용하는 유체력)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo;Choi, Choon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2754-2758
    • /
    • 2008
  • Numerical investigation has been carried out for laminar flow ($Re{\leq}150$) past a square cylinder in cross freestream with an angle of attack. This study would be the first step towards understanding flow-induced forces on cylindrical structures under a strong gust of wind from the viewpoint of wind hazards. Collecting all the numerical results obtained, we propose contour diagrams of drag/lift coefficients and Strouhal number (St) on an Re-Angle plane.

  • PDF

Large eddy simulation of a square cylinder flow: Modelling of inflow turbulence

  • Tutar, M.;Celik, I.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.511-532
    • /
    • 2007
  • The present study aims to generate turbulent inflow data to more accurately represent the turbulent flow around a square cylinder when the inflow turbulence level is significant. The modified random flow generation (RFG) technique in conjunction with a previously developed LES code is successfully adopted into a finite element based fluid flow solver to generate the required inflow turbulence boundary conditions for the three-dimensional (3-D) LES computations of transitional turbulent flow around a square cylinder at Reynolds number of 22,000. The near wall region is modelled without using wall approximate conditions and a wall damping coefficient is introduced into the calculation of sub-grid length scale in the boundary layer of the cylinder wall. The numerical results obtained from simulations are compared with each other and with the experimental data for different inflow turbulence boundary conditions in order to discuss the issues such as the synthetic inflow turbulence effects on the 3-D transitional flow behaviour in the near wake and the free shear layer, the basic mechanism by which stream turbulence interacts with the mean flow over the cylinder body and the prediction of integral flow parameters. The comparison among the LES results with and without inflow turbulence and the experimental data emphasizes that the turbulent inflow data generated by the present RFG technique for the LES computation can be a viable approach in accurately predicting the effects of inflow turbulence on the near wake turbulent flow characteristics around a bluff body.

Investigation on the Flowfield Around a Square Cylinder near a Wall (지면에 근접한 정사각주 주변의 유동장 연구)

  • Hwang, Jae-Ho;Park, Young-Whe;Kim, Tae-Yun;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.754-759
    • /
    • 2001
  • This paper presents unsteady computational investigations and wind tunnel tests on the flow field around a square cylinder with a gap between the body and the ground plane. Two-dimensional unsteady, incompressible Navier-Stokes codes are developed for the computation of the viscous turbulent flows. By computing the flow around a square cylinder without ground effect, three two-equation turbulence models are evaluated and the developed code is validated. The results show a good agreement with experimental values and other computational results. Critical gap height at which the formation of Karman vortex streets is interrupted, is demonstrated and another transition regime is pointed out

  • PDF

Numerical Investigation of CuO-Water Nanofluid Flow and Heat Transfer across a Heated Square Cylinder

  • Bouazizi, Lotfi;Turki, Said
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.382-393
    • /
    • 2016
  • Flow over a bluff body is an attractive research field in thermal engineering. In the present study, laminar flow over a confined heated square cylinder using CuO-Water nanofluid is considered. Unsteady two-dimensional Navier-Stokes and energy equations are solved numerically using finite volume method (FVM). Recent correlations for the thermal conductivity and viscosity of nanofluids, which are function of nanoparticle volume fraction, temperature and nanoparticle diameter, have been employed. The results of numerical solution are obtained for Richardson number, nanoparticle volume fractions and nanoparticle diameters ranges of 0-1, 1-5% and 30-100 nm respectively for a fixed Reynolds number of Re = 150. At a given volume concentration, the investigations reveal that the decreasing in size of nanoparticles produces an increase in heat transfer rates from the square cylinder and a decrease in amplitude of the lift coefficient. Also, the increment of Nusselt number is more pronounced at higher concentrations and higher Richardson numbers.

Computation of Unsteady Separated Flow Using the Vortex Particle Method (I) - Boundary Element Method and Vortex Strength Around the Square Cylinder - (와류입자법에 의한 비정상 박리흐름의 전산(I) -경계요소법과 정방형 실린더 주위의 와류강도-)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.3-8
    • /
    • 1998
  • The vortex particle method, which includes viscous effects, consists of diffusion of boundary vorticity and creation of the vortex particles, convection, particle strength exchange, and particle redistribution. Accuracy of the boundary element method is very important since it creates the particles around the body at every time step. A boundary element method based on source panel was investigated as part of computation of unsteady separated flows by rising the vortex particle method. The potential flows were computed around a circular cylinder and a square cylinder. The results around the circular cylinder were compared with the exact solution, and the distribution of vorticity, in particular near the sharp comers of the square cylinder, is scrutinized for different number of panels.

  • PDF

A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry ( I )- Mean Flow Field - (PIV기법을 이용한 정사각 실린더의 근접후류에 관한 연구 (I) - 평균유동장 -)

  • Lee, Man-Bok;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1408-1416
    • /
    • 2001
  • Mean flow fields in the near wake of a square cylinder have been studied experimentally using a Particle Image Velocimetry (PIV). Ensemble-averaged velocity fields are successfully measured fur the square cylinder wake including the reverse flow region which arises many difficulties in accurate measurement by using conventional techniques, Experiments are performed at two free stream velocities of U$\_$$\infty$/ = 1.27m/s and 3.03m/s. The corresponding Reynolds numbers based on the free-stream velocity and cylinder diameter are 1600 and 3900, respectively. The intensity of free-stream turbulence is less than 1%, the blockage ratio (D/H) is 6.6% and the aspect ratio (W/D) is 40. The effect of Reynolds number on the near wake of a square cylinder has been investigated by the global mean velocity and instantaneous velocity fields. The most striking feature is that the length of the recirculating region increases with increasing Reynolds number, which turns out totally reverse trend compared with those observed in the circular cylinder wake at the same range of Reynolds number. Fer the case of higher Reynolds number, the mean velocity data agree well with those of relevant existing data obtained at much higher Reynolds numbers, which reflects the general aspect of sharp-edged bluff body wake.