• Title/Summary/Keyword: Square Column

Search Result 338, Processing Time 0.033 seconds

Dynamic Analysis of Superstructures on Very Large Floating Structure with Semi-Rigid Connections (반강접 접합부를 적용한 초대형 부유식 구조물 상부구조체에 대한 동적해석)

  • Song Hwa-Cheol;Kim Woo-Nyon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.389-394
    • /
    • 2005
  • The additional moment occurs because the superstructures of VLFS are influenced by wave loads instead of earthquake loads. In order to reduce the additional moment, this study used the semi-rigid connections which lie between fully rigid and pinned. If the semi-rigid connections are used for superstructures of VLFS, the moment of beams can be reduced and more economical construction will be possible. This study aims to show the effect of wave loads on structure and the efficiency of the semi-rigid connections due to wave loads by analyzing the time history responses. The dynamic behaviors of the rigid frame are compared with those of the semi-rigid frame considering of static loads, wave loads and combination loads for a four-bay, three-story frames. The semi-rigid connection type is a steel tubular column with square external-diaphragm connections and the time history analysis is used for the dynamic responses. The additional moment responses due to wave loads increase $33\%$ in the rigid frame, $26\%$ in the semi-rigid frame with the spring model.

Fire Resistance of Concrete-Filled Circular Steel Tube Columns under Central Axial Loads (일정 축력을 받는 콘크리트충전 원형 강관기둥의 내화성능 평가)

  • Park, Su Hee;Song, Kyung Chul;Ryoo, Jae Yong;Chung, Kyung Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.655-663
    • /
    • 2008
  • In this research, the fire resistance of Concrete-Filled Circular Steel Tube Columns (CFT) was evaluated by numerical analysis. As the materials of CFT columns, the steel of SPSR 400 grade and the concrete of 27.5MPa, 37.8MPa strengths were used. Significant parameters,such as concrete strength, axial load, and cross-sectional dimensions were determined. To verify the accuracy of the numerical analysis,the analysis results were compared with the former experiment results. The effect of the fire resistance time, axial load ratio, cross-sectional dimensions and concrete strength was evaluated by comparison with the fire resistance of the square CFT columns. This research showed that the structural behavior and fire resistance from the findings of numerical parametric studies showed a similarity to that of the experimental results. Therefore, this numerical analysis is reasonable in estimating the fire resistance of the circular CFT column.

Uniaxial Compression Behavior of RC Columns Confined by Carbon Fiber Sheet Wraps (탄소섬유쉬트로 구속된 RC 기둥의 일축압축 거동)

  • Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.207-216
    • /
    • 2005
  • External confinement by CFS (Carbon Fiber Sheet) is a very effective retrofit method for the reinforced concrete columns subject to either static or seismic loads. For the reliable and cost-effective design of CFS, an accurate stress-strain model is required for CFS-confined concrete. In this paper, uniaxial compression test on short RC column with square section was performed. To evaluate the effect of confinement on the stress-strain relationship of CFS-confined concrete, CFS area ratio and tie area ratio are considered. Based on the experimental results, a stress-strain model is proposed for concrete confined by CFS wraps. In the development of the model, the method to compute the actual hoop strains in CFS jackets at the rupture was examined and resolved. Overall, the results of the model agree well with test data.

A Study on the Prediction of the Strength and Axial Strain of High-Strength Concrete Columns Confined by Tie Reinforcement (띠근 보강 고강도 콘크리트 기둥의 강도 및 축변형 특성 산정에 관한 연구)

  • Park, Hoon-Gyu;Jang, Il-Young
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.197-208
    • /
    • 1999
  • The use of high-strength concrete which permits smaller cross sections, reduced dead loads, and longer spans has been getting more popular in tall buildings. However, there has been little research on behavior of high-strength concrete columns laterally reinforced with square ties and subjected to compressive loading. With the addition of transverse reinforcement which lead to triaxial compressive state, ductility behavior of high-strength column member shall be increased. In this study, rational quality and quantity evaluations were made to investigate the ultimate strength and strain ductility by confinement effect of tie reinforced high-strength concrete columns subject to uniaxial loads. Concrete failure theory at the triaxial compressive state and statistical results based on conventional experimental data were applied for this propose. Up to 185 columns, tested under monotonically increasing concentric loading, were evaluated in terms of strength and strain ductility. Analytical results show that confinement stress, maximum compressive strength, and increase of strain equations were developed with the consideration of concrete strength, yield strength, spacing, volumetric ratio, and configurations of tie reinforcement.

Seismic Capacity Evaluation of Rectangular RC Columns Strengthened with Steel Bars (강봉으로 보강된 RC 사각기둥의 내진 성능 평가)

  • Dongmin Lee;Seong-Cheol Lee;Dong-Ho Shin;Chang Kook Oh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.283-293
    • /
    • 2023
  • With the steady increase in the annual number of earthquakes in South Korea, the need to apply seismic reinforcement on public facilities has recently increased. To reinforce seismic capacity, spaced full-column-height steel bars are attached to column faces. In this study, nonlinear finite element analysis was conducted to analyze the effect of external reinforcement steel bars on the seismic capacity of RC columns with a square or rectangular cross-section. For verification, the analysis results were compared with test results. Results showed that the finite element analysis reasonably predicted the actual structural behavior of RC columns with steel bars. In addition, both the analysis and the test results showed that the failure mode was converted from brittle failure to ductile fracture, owing to the external reinforcement steel bars. Both loading capacity and ductility were increased as well. Therefore, the external reinforcement steel bar can effectively enhance the seismic capacity of existing RC columns. This study is expected to contribute to relevant research areas such as the development of design methods.

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

A Study on the Architectural Characteristic Jang-Dae of Castle in the Joseon Dynasty (조선시대 성곽 장대의 건축특성에 관한 연구)

  • Kim, Ki-hyeon;Chang, Hun-duck
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.2
    • /
    • pp.120-141
    • /
    • 2015
  • This paper is a preliminary study of architectural characteristics of Jangdae (general's podium), which shows one of the technical changes in fortification of Joseon Dynasty. As a facility for commands of generals and training for officers and men, it was located inside a fortress. Although it is not certain when the first Jangdae was built, the number of them dramatically increased around 18th century. Since the top priority function of the Jangdae was the prospect, it was installed at the hilly spot with open architecture. In addition, the open structure of Eupseong fortress towers on the riverside banks could simultaneously offer the functions as viewing around and Jangdae. Since Jangdae was also a place for military drills and reviews of soldiers, a wide podium was positioned at the front to muster the soldiers. This feature was standardized in the space organization of Jangdae in Joseon, and a mere podium was installed unless the topographic restrictions allows enough space. On the other hand, as a place for a commander, the hierarchy of the Jangdae was revealed through a variety of architectural characteristics. The hierarchy was assigned to the commander's space through the altitude difference, and diverse ornaments were added to show a sense of class. The floor plan of the Jangdae building can be largely categorized into rectangle and square, and the typical sizes of the former are $5{\times}4$ Kans (traditional measuring unit between two columns) and $3{\times}2$ Kans. Out of these two types, buildings of $5{\times}4$ Kans were found in flat land and eupseong fortresses with large space, and the relatively smaller ones of $3{\times}2$ Kans in mountain fortresses. All buildings of square floor plan had $3{\times}3$ Kans style, and the center Kan was twice wider than the side Kan to make the central space wide. It seems that the purpose was to secure the interior space of the upper story because the center Kan accounts for the floor area of the upper story. Some Jangdae's had internal story to form overhead space. The multi-roofed tower style with eaves attached to the upper and lower story is found exclusively in Jangdae. The buildings shows the Onkanmulim style which extends Naejinju (inner column) of the lower story to be the Byeonju (outer column) of the upper story, and the log-framed floor in the upper floor was structured by inserting the Changbang (connecting beam) between the Naejinju's and joining the log frames. In addition, the towers in eupseong fortresses had log-framed floor in the upper floor by setting up the high Nuhaju (column underneath a roof) and joining Cheongbang to the upper part of the column while it cannot be regarded as multi-roofed because only the upper part has a roof.

Ultimate Strength of Fillet-welded T-joints in Cold-formed Square Hollow Sections-chord web failure mode (냉간성형 각형강관 모살용접 T형 접합부의 최대내력(II)-주관웨브 파괴모드-)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.403-411
    • /
    • 2002
  • This paper described the ultimate strength and deformation limit of welded T-joints in cold-formed square hollow sections. Previous studies showed that the T-joint has an obvious peak load. with the failure mode of chord-web buckling at a ratio of branch width to chord width ($\beta$) of above 0.8. Similar to a T-joint with chord-flange failure mode, the strength at a certain deformation limit can be regarded as the ultimate strength of a T-joint Based on the experimental results including tests done by Kato and Zhao, the deformation limit was proposed as 3%B for $10.7{\leq}2{\gamma}(B/T){\leq}42.3$ and $0.8{\leq}{\beta}{\leq}1.0$. The strength formula of CIDECT and those of other researchers were also compared with the test results. Finally, the strength formula based on the column buckling was proposed.

A Study on Finite Element Methods for HSS(Hollow Square Section) Steel Columns Strengthened with Carbon Fiber Reinforced Polymer Plastic(CFRP) Sheets (탄소섬유쉬트(CFRP Sheets)로 보강된 각형강관(HSS)기둥의 유한요소해석 연구)

  • Park, Jai Woo;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.185-194
    • /
    • 2016
  • This paper presents the finite element method results for HSS(Hollow Square Section) steel columns strengthened with Carbon Fiber Reinforced Polymer Plastic(CFRP) sheets. 6 specimens were fabricated and the specimen groups were non-compact short columns, slender short columns, and non-compact long columns. Test parameter was the number of CFRP ply. The finite element analysis was performed by using ANSYS Workbench V.14.0 and the results of FEM were compared with those of Test for failure mode, load-displacement curve, maximum load, and initial stiffness. The comparisons between experimental observations and computed results show that the analyses provided good correlation to actual behavior. Finally, the buckling stress were calculated according to the AISC cold-formed structure provision and the retrofitting effect were verified for each section type.

Strength Characteristics of Square Concrete Column Confined by Carbon Composite Tube (탄소섬유튜브로 횡구속된 각형 콘크리트 기둥의 압축강도 성능에 관한 연구)

  • 홍원기;김희철;윤석한;박순섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The carbon composite tube can play an important role in replacing or complementing longitudinal and transverse reinforcing steels by providing ductility and strength for conventional columns. In this study, both the experimental and analytical investigations of axial behavior of large-scale square concrete columns confined by carbon composite tube are presented. The specimens are filament-wound carbon composite with 90$^{\circ}$+30$^{\circ}$, 90$^{\circ}$+45$^{\circ}$ winding angle respect to longitudinal axis of tube. The instrumented large-scale concrete-filled composite tubes(CFCT) are subjected to monotonic axial loads exerted by 10,000kN UTM. The influence of winding angle, thickness of tube on stress-strain relationships of the confined columns is identified and discussed. Proposed equations to predict both the strength and ductility of confined columns by carbon composite tube demonstrate good correlation with test data obtained from large-scale specimens.