• Title/Summary/Keyword: Spur Gear

Search Result 190, Processing Time 0.024 seconds

Fabrication of a Micro Die by LIGA Process and Hybrid Powder Extrusion Process of Micro-spur Gear (LIGA 공정을 이용한 초소형 스퍼기어 금형 제작 및 하이브리드 분말 압출성형)

  • Lee, K.H.;Hwang, D.W.;Kim, J.H.;Jang, S.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.352-356
    • /
    • 2010
  • This paper was designed to fabricate the micro-spur gear by the LIGA and hybrid powder extrusion process. It is important to manufacture a micro-die with a high aspect ratio and determine appropriate extrusion conditions for a microforming. Ni has been used to fabricate micro-dies. LIGA process was capable to produce micro-extrusion dies with close tolerance, longer bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro-formability with average strain rate raging from $10^{-3}$ to $10^{-2} s^{-1}$ and constant temperature ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape ($\Phi3\times$h10mm) under compressive force of 10kN and, subsequently, the compacted powders were extruded by the hybrid powder extrusion process controlling of the temperature holing time for a improvement on formability of Al-22Zn powder. Micro-extrusion has succeeded in forming micro-gear shafts.

Upper Bound Analysis on the Forging of Gear-Like Components (기어류 부품의 단조에 관한 상계해석)

  • Min, G.S.;Park, J.U.;Lee, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.102-112
    • /
    • 1997
  • This paper describes the method that can construct kinematically admissible velocity fields for forging of gear-like components which have tooth shape around the cylinder. The kinematically admissible velo- city fields for the various gear-like components, involute spur gear, trapezoidal spline, square spline, ser- ration and trochoidal gear, were constructed by pilling up the velocity components according to the shape of tooth and billet. The billets, of hollow and solid, were Al 2218 and 2024. To verify the method, the analyses and experiments were carried out and compared with each other. For analyses, the half pitches of com- ponents were divided into several deformation regions based on their tooth profile. A neutral surface was used to represent the inner flow of material during forging. Its location varied with the energy optimazation and its contour varied with the number of teeth. In experiment, the contour of material filling up the tooth zone is hyperbolic curve caused by the frictional drag on the interface of die-wall/workpiece but, in the analysis, it is an arc which retains the same contour during all forging operation.

  • PDF

Analysis of the Transmission Error of Spur Gears Depending on the Finite Element Analysis Condition (스퍼 기어의 유한요소해석 조건에 따른 전달 오차 경향성 분석)

  • Jaeseung Kim;Jonghyeon Sohn;Min-Geun Kim;Geunho Lee;Suchul Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.121-130
    • /
    • 2023
  • Finite element analysis is widely used to predict the structural stability and tooth contact performance of gears. This study focused on the effect of finite element modeling conditions of a spur gear on the simulation result and the model simplification. The gear body and teeth, teeth width, configuration of mesh, frictional coefficient, and simulation time interval (gear mesh cycle division) were selected for model simplification for gear analysis. The static transmission error during a single-gear mesh cycle was calculated to represent the performance of the gear, and the elapsed time was measured as a simplification factor. Contact stress distribution was also checked. The differences in maximum transmission error and elapsed time depending on the model simplification methods were analyzed. After all simplification methods were estimated, an optimal combination of the methods was defined, and the result was compared with that of the most detailed modeling methods.

Spur gear forging tool manufacturing method considering elastic deformation due to shrink-fitting (열박음에 의한 탄성변형을 고려한 평기어금형 제작 방법에 관한 연구)

  • Kang, J.H.;Ko, B.H.;Jae, J.S.;Kang, S.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.381-385
    • /
    • 2006
  • This research introduces easy tool manufacturing method regarding tool manufacturing procedure. In the conventional method, wire cutting machining and lapping operation of corner and render region were performed after shrink-fitting to ensure the accuracy of gear profile. But lapping operation is very difficult due to corner and render is located deep inside of die. In this research, wire cutting operation was performed after $1^{st}$ ring was shrink-fitted to ease lapping operation and increase the accuracy of corner radius. Before $2^{nd}$ ring fitting, lapping was completed. Elastic deformation amount due to $2^{nd}$ ring fitting and cold forging was calculated through finite element analysis and wire cutting specification was offset in that amount. Comparison of gear dimension between analysis and forged part ensures the validity of new manufacturing methods.

  • PDF

The Subsurface Stress Field Caused by Both Normal Loading and Tangential Loading

  • Koo Young- Phi;Kim Tae-Wan;Cho Yong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1967-1974
    • /
    • 2005
  • The subsurface stress field caused by both normal loads and tangential loads has been evaluated using the rectangular patch solution. The effect of tangential loading on the subsurface stress field has been investigated in detail for both the cylinder-on-cylinder contact and a spur gear teeth contact. For the cylinder-on-cylinder contact, the subsurface stress fields are moved more to the direction of tangential loads and the positions where the maximum stress occur are getting closer to the surface with the increasing tangential loads. The subsurface stress fields of the gear teeth contact are expanded more widely to the direction of tangential loads with the increasing tangential loads. The friction coefficient of a gear teeth contact is low because they are operated in a lubricated condition, and therefore surface tractions in the EHL condition hardly affect on the subsurface stress field.

Forming Analysis and Design of Cold Gear Forging using 3D Finite Element Method (3차원 유한요소법을 적용한 냉간단조 기어 성형 해석 및 설계)

  • 송종호;김수영;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.108-111
    • /
    • 2002
  • It is important to predict forming procedure for minimizing trial-and-error in the application of cold forging of gears. In this study, 3-dimensional simulations of cold forging processes of spur and bevel gear were carried out using finite element method to investigate the characteristics of the processes. From the simulation result it was found that incomplete teeth forming of spur gear was occurred with increase of teeth number in forging by forward extrusion. It can be reduced through division of material flows at the initial forming state using forward/backward combined extrusion.

  • PDF

Effects of Tribological Parameters on the Nonlinear Behavior of a Spur Gear Pair with One-Way Clutch (트라이볼로지 변수가 원웨이클러치를 가지는 평기어쌍의 비선형 거동에 미치는 영향)

  • Cheon, Gill-Jeong
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.241-249
    • /
    • 2008
  • This paper describes the tribological effects on the nonlinear behavior of a spur gear pair with one-way clutch according to the direct contact elastic deformation model over a wide range of speeds, considering the hydrodynamic effects. The effects of various lubrication parameters, such as viscosity, film width, and friction, on the nonlinear dynamic behavior were analyzed. Forces due to the entraining velocity and the hydrodynamic friction were about two orders smaller than normal forces over the whole speed range. While the viscosity has a strong effect on the behavior of gear pair systems, friction has very little effect on torsional behavior. The inclusion of the hydrodynamic effect facilitates nonlinearity by increasing the overlap and damping, as well as decreasing elastic deformation and tooth reaction forces.

A Study on the Profile Modification of Spur Gears for the Prevention of Gear Tooth Overlap by Deformation (평기어 치의 변형 후 치간섭 방지를 위한 치형 수정에 관한 연구)

  • Huh, Gyoung-Jae;Park, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.208-214
    • /
    • 1999
  • The purpose of this paper is to develop a profile modification technique of spur gears and its computer program for the prevention of gear tooth overlap. In the gear system, tooth overlap produces an impact at the initial contact of some tooth pairs. In this analysis, contact surface was assumed to be unbonded and frictionless under small deformation and stain. The problem is formulated by a variational statement with inequality constraint. Tooth load sharing is obtained by the application of contact theory, and overlap is known by the analysis of deformation. After carrying out the profile modification of gear tooth, we verified the reasonable results.

  • PDF

Experimental Investigation to Establish Correlation between Specific Film Thickness and Sound Signals in a Spur Gear System (스퍼 기어 시스템의 음향 신호와 비 유막 두께(Specific Film Thickness)의 상관관계에 관한 실험적 연구)

  • Kim, Jongsik;Amarnath, M.;Lee, Sangkwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.643-650
    • /
    • 2014
  • Gear transmission system is widely applied in engineering. As the problem of contact fatigue, wear, lubrication failure etc, the condition of gear teeth contacts will be worse. The vibration and sound signals in the gear system will be affected by the some failures like scuffing, abrasive wear and spalling due to the deterioration of gear teeth surface. By studying the estimation of specific film thickness, measurement of reduction in tooth thickness, visual examination of wear mechanisms on the gear teeth and their effects on the statistical parameters of vibration and sound signals, the research obtained the satisfactory results on accessing the surface fatigue wear in a spur gear system. The paper utilizes the relationship between statistical parameters obtained from sound signals and Stribeck curve to confirm the hypothesis of dependency of surface fatigue wear, specific film thickness.