• Title/Summary/Keyword: Sprue

Search Result 45, Processing Time 0.025 seconds

Mechanical Properties of Zirconia Reinforced Glass-Ceramic (지르코니아 강화형 Glass-Ceramic의 기계적 성질)

  • Park, Eun-Eui;Dong, Jin-Keun;Lee, Hae-Hyoung;Song, Ki-Chang;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.3
    • /
    • pp.199-204
    • /
    • 2001
  • This study was to investigate the reused possibility of zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) with sprue button in the flexure strength and fracture toughness. 40 disk-shaped ceramic specimens (20 specimens: as-pressed material; 20 specimens: reused material) with approximately 1.7 mm thickness and 15 mm diameter were prepared by "lost wax" technique. The remnants(sprue buttons) were used for repressing. The surface treatments for the discs were gradually abraded with 320, 800, 1200, and 2000 grit SiC sandpaper. The specimens were evaluated their flexure strength with the biaxial flexure jig(ball-on-three balls) and their fracture toughness with Vickers Indentation-microfracture test. The Weibull moduli were calculated for biaxial flexural strength. The mean flexure strength and fracture toughness of each group were $122.2{\pm}18.3MPa$, $1.00{\pm}0.09MPa{\cdot}m^{0.5}$ (as-pressed ceramics), and $122.2{\pm}20.3MPa$, $1.01{\pm}0.10MPa{\cdot}m^{0.5}$ (reused ceramics). There were no significant differences in the strength and the fracture toughness between the as-pressed and the reused IPS Empress Cosmo ceramic (P>0.05). This implied zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) could be used one more time by reusing of sprue button in the flexure strength and fracture toughness.

  • PDF

A STUDY ON THE FLEXURAL STRENGH OF HEAT-PRESSED CERAMICS ACCORDING TO SPRUE DESIGNS (주입선 설계에 따른 Heat-pressed ceramic의 파절강도에 관한 연구)

  • Oh, Sang-Chun;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.130-143
    • /
    • 1997
  • A heat-pressed technique(IPS-Empress, Ivoclar) has been described to construct single unit crown, inlay/onlay and veneers using a partially pre-cerammed and pre-colored glass-leucite ingot that has the greateast strength by the combination of heat-pressed procedure through the smalldiameter sprue and heat treatment procedure. The purpose of this study was to evaluate the flexure strength of a heat-pressed ceramic material(IPS-Empress) without simulated firing treatments according to pontic designs. Two groups of 9 disks(1.4mm thick, 14mm in diameter) each using two types of sprues with different diameters($({\Phi}2.8\;,{\Phi}1.8)$) and numbers were prepared. The specimens were mounted in the testing jig. The flexural strengths were determined, by means of the bi-axial bending test, by loading the center of disk to failure using a universal testing machine(Zwick 145141, Zwick, Germany) at a cross-head speed of 1.0 mm/min. The means flexural strength value of one group using a sprue with ${\Phi}2.8$ was $140.4{\pm}8.0Mpa$. That of the other group using two sprues with ${\Phi}1.8$ was $151.8{\pm}10.3Mpa$. After analysis, results showed that there was a statistical difference between groups(t=2.33m p<0.05). No clnical implications were drawn from these data because of absence of simulated firing treatment.

  • PDF

A study on the ideal structure of feed sprue in the investment casting process (정밀주조 프로세스에서 피드 스프루의 이상적 구조에 관한 연구)

  • Lee, Kwang-Yeol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.105-113
    • /
    • 2012
  • Maintenance training is generally provided to teach employees new knowledge and techniques in order to increase their qualities. It means that the purpose of maintenance training is to increase an employee's knowledge or technique level and to maintain or increase their performance level through continuous training in their field, and the methods, contents and the level of training vary depending on the type of job they perform. Maintenance training is more important for jobs that require continuous technical increases or research, or for professional jobs that continuously require new knowledge and techniques. The purpose of this study is to provide quality service to consumers by responding to the rapidly changing jewelry distribution environment and to quickly and accurately acquire new and advanced jewelry inspection and appraisal techniques, and to contribute to the healthy consumption culture through a general quality increase in the jewelry industry.

Case Study of Practical Tool Training for Optimal Runner System (최적 유동시스템을 위한 실무금형교육 사례 연구)

  • Shin, Ju-Kyung
    • Journal of Practical Engineering Education
    • /
    • v.9 no.2
    • /
    • pp.119-124
    • /
    • 2017
  • In injection molding process, the runner system of the mold is a flow path for filling the cavity of the molded part during the advance of the screw by the force of the hydraulic cylinder, which involves the filling and packing process of the molten resin. Thus, the sprue, runner and gate greatly affect the appearance of the molded part, the physical properties of the resin, the dimensional accuracy and the molding cycle etc. Feed systems with incorrect runner and gate designs cause various molding defects, So it is important to maintain the optimum runner balance to prevent these defects. In order to improve the knowledge of practical mold technology, which is applied to the manufacturers of injection molds, a training model of the mold technology process is presented based on the technical guidance on the technical difficulties.

Interaction Factors and Response Surface Analysis on the Factors Influencing the Flow Front Temperature at Metal Injection Mold (금속사출 유동선단온도에 영향을 미치는 주요 인자들의 상호관계 및 반응표면분석)

  • Kim, Myoung-Ho;Yoon, Hi-Seak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.248-255
    • /
    • 2013
  • The objective of this study is to optimize the Metal Injection Molding(MIM) process with design of experiments(DOE) and numerical analysis. To derive the optimal process condition, experiment or numerical analysis was performed under various process conditions. To analyze the interaction among influential factors contributing to the temperature at flow front and response surface in MIM, both central point and axial point were added to the full factorial design with 2 levels and 5 factors and then their impacts on response variable in 43 experimental conditions were analyzed and the significance was evaluated. As a result, sprue, runner, and gate were completely filled in about 0.247 seconds after injection, the front part of the green body was filled in about 0.3344 seconds, the green body except gate, etc changed to almost solid state in about 3.29 seconds, the Packinging pressure was completed in about 6.29 seconds, and the green body inside and outside and sprue, etc became solid in 13.2 seconds. The impact of individual or reciprocal action of factors on the temperature at flow front was analyzed through regular probability, test statistics, main effect, and interaction effect. As a result, of a total of 31 combinations of factors, 9 unit factors and reciprocal actions were significant, and the screening was also possible. A proper regression equation was drawn with regression analysis and response surface design on the response variable of temperature at flow front, and the applicability could be verified.

A study on structure of feed sprue considering turbulence and mold temperature in the investment casting process (Investment casting 공정에서 수축률을 고려한 소형탕도의 이상적인 구조와 주형 온도에 관한 연구)

  • Lee, Jong-Rae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Investment casting is a production method commonly used to manufacture precision equipment, medical fields, and accessories, and has continued to develop through the modernization of equipment and high quality of materials, and its scope of use has been expanded. The purpose of this study is to minimize the defect rate by deriving structural improvement and standardization of mold temperature, which are key elements of the investment casting process, to minimize the defect rate. The scope of the study is limited to jewelry manufacturing casting processes suitable for understanding the structure and principles of small gate, and an experimental research is to be conducted by using soft Wax, gypsum powder, and 14 K gold as research materials. According to the results, the most appropriate casting standard temperature for the casting pattern of Alloy 14 k was the lowest turbulence at 980℃ flask temperature of 550℃, so good products could be produced. As a future task of this study, detailed studies are needed to data the structure and system temperature of small gate, reduce production defects in the field, and provide data for excellent investment casting competitiveness.

Effect of Casting Variable on the Fluidity of High-Silicon Heat-Resistant Ductile Cast Iron Melt (고규소 내열 구상 흑연 주철 용탕의 유동도에 미치는 주조 변수의 영향)

  • Cho, Woong-Che;Kwon, Hae-Wook;Seo, Gap-Sung
    • Journal of Korea Foundry Society
    • /
    • v.24 no.4
    • /
    • pp.217-224
    • /
    • 2004
  • The effect of casting variable on the fluidity of high silicon, especially hypereutectic, heat-resistant ductile cast iron melt was investigated. When pouring temperature and silicon content were constant, that was increased with carbon content. When the pouring temperature and carbon content were constant, that also increased with the silicon content. Even though these results were thought to be caused by the high heat of fusion evolved during the crystallization of proeutectic graphite nodules, further research seemed to be needed. The fluidity for taller sprue was higher than that for smaller one.

Inertia Force Problem and Nozzle Contact Mechanism of Linear Motor Drive Injection Molding Machine

  • Bang, Young-Bong;Susumu Ito
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.34-40
    • /
    • 2003
  • This paper presents the inertial force problem of ultrahigh-speed injection molding machine using linear motors, and presents its solutions. To make very thin products by injection molding, very high injection speed is required, and linear motors are used for this purpose. However, direct drive by linear motors may cause brief nozzle separation from the sprue bushing because of the inertia force which is as large as the total output thrust of the linear motors, and this momentary separation can cause molten plastic to leak. In this paper, two solutions are proposed for this inertia force problem. One is the mechanical cancellation of the inertia force, and the other is to increase the nozzle contact force. With the latter solution, the stationary platen bending worsens, so a new nozzle contact mechanism is also proposed, which can prevent the stationary platen bending.

Development of Wasteless Mold for rubber molding Part (고무 성형제품의 Wasteless 금형 개발에 대한 연구)

  • Choi N.J.;Huh Y.M.;Kang S.S.;Park S.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.101-104
    • /
    • 2004
  • The application of rubber produt is a quite extensive field and has several problems in point of mass-production. The inhibitive factors at the general rubber mold are occurrence of flash, loss of raw material by curing for sprue and runner, environmental pollution by scrap junked after extraction of product and the unavailable mold structure for automation. The existence of flash at the rubber mold requires extra-process for removing or finishing it. As the reason, we can't help avoiding deterioration of quality and rising of cost. Hence we promptly need to research fur the efficient structure of mold and the preventive transforming technique of the flash without any loss of raw material in advance. This monograph is a study for Wasteless rubber mold that give us a solution for several problems happened at the general rubber mold.

  • PDF