• Title/Summary/Keyword: Sprinkler Control System

Search Result 41, Processing Time 0.03 seconds

Mechanism and Spray Characteristics of a Mini-Sprinkler with Downward Spray for Prevention of Drop Water (하향 분사식 미니스프링클러의 낙수방지 메카니즘과 살수 특성)

  • Kim, Hong-Gyoo;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • A study was conducted to find mechanism and spray characteristics of a mini-sprinkler with downward spray to develop a new design type to be able to prevent drop water. The experiments were executed in a plastic greenhouse to minimize the effect of the wind. Data was collected at five different operation pressures and at 4 different raiser heights. Spray characteristics of the sprinkler such as effective radius, effective area, mean application depth, absolute maximum application depth, effective maximum application depth and coefficient of variation were determined. In order to analyze the mechanism and packing supporter of sprinkler, the numerical simulation using ABAQUS was performed. The optimum pressure for preventing drop water was determined.

IoT based Electronic Irrigation and Soil Fertility Managing System

  • Mohammed Ateeq Alanezi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.146-150
    • /
    • 2023
  • In areas where water is scarce, water management is critical. This has an impact on agriculture, as a significant amount of water is used for that purpose. Electronic measurement equipment are essential for regulating and storing soil data. As a result, research has been conducted to manage water usage in the irrigation process. Many equipment for managing soil fertility systems are extremely expensive, making this type of system unaffordable for small farmers. These soil fertility control systems are simple to implement because to recent improvements in IoT technology. The goal of this project is to develop a new methodology for smart irrigation systems. The parameters required to maintain water amount and quality, soil properties, and weather conditions are determined by this IoT-based Smart irrigation System. The system also assists in sending warning signals to the consumer when an error occurs in determining the percentage of moisture in the soil specified for the crop, as well as an alert message when the fertility of the soil changes, since many workers, particularly in big projects, find it extremely difficult to check the soil on a daily basis and operate agricultural devices such as sprinkler and soil fertilizing devices.

Construction and basic performance test of an ICT-based irrigation monitoring system for rice cultivation in UAE desert soil

  • Mohammod, Ali;Md Nasim, Reza;Shafik, Kiraga;Md Nafiul, Islam;Milon, Chowdhury;Jae-Hyeok, Jeong;Sun-Ok, Chung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.703-718
    • /
    • 2021
  • An irrigation monitoring system is an efficient approach to save water and to provide effective irrigation scheduling for rice cultivation in desert soils. This research aimed to design, fabricate, and evaluate the basic performance of an irrigation monitoring system based on information and communication technology (ICT) for rice cultivation under drip and micro-sprinkler irrigation in desert soils using a Raspberry Pi. A data acquisition system was installed and tested inside a rice cultivating net house at the United Arab Emirates University, Al-Foah, Al-Ain. The Raspberry Pi operating system was used to control the irrigation and to monitor the soil water content, ambient temperature, humidity, and light intensity inside the net house. Soil water content sensors were placed in the desert soil at depths of 10, 20, 30, 40, and 50 cm. A sensor-based automatic irrigation logic circuit was used to control the actuators and to manage the crop irrigation operations depending on the soil water content requirements. A developed webserver was used to store the sensor data and update the actuator status by communicating via the Pi-embedded Wi-Fi network. The maximum and minimum average soil water contents, ambient temperatures, humidity levels, and light intensity values were monitored as 33.91 ± 2 to 26.95 ± 1%, 45 ± 3 to 24 ± 3℃, 58 ± 2 to 50 ± 4%, and 7160-90 lx, respectively, during the experimental period. The ICT-based monitoring system ensured precise irrigation scheduling and better performance to provide an adequate water supply and information about the ambient environment.

Variation in root system developmental responses of irrigated and rainfed philippine rice varieties to water stressed environments

  • Cabral, Maria Corazon J.;Niones, Jonathan M.;Suralta, Roel R.;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.230-230
    • /
    • 2017
  • About 200 rice varieties for irrigated and rainfed lowland ecosystems were released in the Philippines, which were bred for improving yield under favorable conditions. Root plasticity plays key roles in maintaining crop productivity under abiotic stressed conditions. We hypothesized that some of these varieties possess root plasticity traits in response to water stressed conditions. This study aimed to evaluate the root system development and dry matter production of 14 randomly selected rice varieties (6 irrigated lowland and 9 rainfed varieties) under progressive drought (PDR) and soil moisture fluctuations (SMF) stress conditions. Two experiments were done in rootbox and line source sprinkler systems (LSS). Each of the varieties was subjected to well-watered (WW), PDR and SMF conditions during vegetative stage in rootbox system while the same genotypes were subjected to different intensities of drought stress under LSS. Under rootbox system, PDR and SMF significantly reduced shoot dry matter production in all varieties relative to their WW controls. Among varieties, NSIC Rc238 (irrigated lowland) showed the least reduction in shoot dry weight (SDW) in both PDR (by 11.8%) and SMF (by 26.9%) conditions. Less reductions in SDW of NSICRc238 were partially attributed to the promotion of L-type lateral roots, thus increasing total lateral root length by 24.2% and 30.7% under PDR and SMF, respectively. In LSS, SDW of NSIC Rc238 under mild drought stress (16-21% soil moisture content (SMC) had 31.8% reduction relative to its WW control (${\geq}22%SMC$) and had lower sensitivity drought index. Compared with the IR64 susceptible check and NSIC Rc9 tolerant check, NSIC Rc238 had higher SDW by 90.8% and 38.6%, respectively. Furthermore, no rainfed lowland varieties included in the experiment performed well under different water stress treatments. The results implied that some other irrigated lowland rice varieties may also possess drought dehydration avoidance root plasticity traits under water-stressed growing environments.

  • PDF

Use of Sprinkler System for Control of the Pine Needle Gall Midge, Thecodiplosis japonensis Uchida et Inouye (분무장치(噴霧裝置)를 이용(利用)한 솔잎혹파리 방제(防除)에 관(關)한 연구(硏究))

  • Chung, Sang Bae;Kim, Chul Su
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.311-321
    • /
    • 1994
  • Experiments were conducted to evaluate the efficacy of ground and foliar sprinkling of natural water for control of the pine needle gall midge, Thecodiplosis japonensis, by disturbing the reproductive behavior of adults such as copulation and oviposition. Diurnal ground spray for whole area application and foliar spray for single tree treatment were tested at day time during the period of adult emergence. The results obtained are as follows : 1. The population density of overwintering larvae in soil was not affected by the water spray during the adult emergence period. 2. Spraying the water showed no effect on the whole period and number of adult emergence, but retarded early emergence and facilitated Late emergence. The difference in the emerging time by 50% emergence day was approximately 7 days. 3. Ground spray was significantly different from control in gall formation rates but was not sufficient for effective control. As a single-tree treatment, the foliar spray was found to be highly effective for control of the pine needle gall midge, Average gall formation of spray plots and untreated ones were 2.6% and 38%, respectively ; control value exceeded 90%. 4. Ground spray of water was not effective in reducing larvae in gall of needle. Foliar spray, however, reduced 45% of larval numbers. 5. Foliar spray accelerated shoot growth by 15%-18%. 6. Foliar spray was highly effective for the control of sucking insects, such as mites and aphids on pine trees.

  • PDF

Design of Simulation Environment for Intelligent Disaster Prevention System and Implementation of Management Application (지능형 방재 시스템 시뮬레이션 환경 및 관리 어플리케이션 구현)

  • Cho, Young-Ho;Kang, Heau-Jo;Sung, Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.602-608
    • /
    • 2011
  • In this paper, we implemented an android mobile management application of intelligent prevention of disaster system which can manage the current status monitoring and whether operating or not by using Ubiquitous Sensor Network based self wireless communication system of scattered emergency light, fire extinguishers and sprinkler inside the high complex building. This system is composed with fire facilities attached sensor nodes, management server for collection of information and control, and smart phone application that transmits and receives information with management server. As a result of the test, the embodied android-based smart phone application to be performed anywhere could confirm status and monitoring information of fire facilities which are communicated with the management server.

Analysis of the Working Conditions of Fire Protection Systems in the Goyang Bus Terminal Building Fire (고양종합터미널화재 시 소방시설의 작동실태 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.95-107
    • /
    • 2018
  • This study analyzed the working conditions of the fire protection system in the Goyang Bus Terminal fire based on the fire investigation results. The results were as follows. First, extinguishing using an indoor fire hydrant was not attempted immediately after the fire burned the ceiling urethane foam. Second, a sprinkler alarm valve was turn off and did not work in the repair work space of the 1st basement. On the other hand, the sprinklers in the $2^{nd}$ basement, $1^{st}$ floor, $2^{nd}$ floor, and $3^{rd}$ floor worked and prevented the fire from moving to stories other than the $1^{st}$ basement. Third, although an exit light worked normally, it was not installed in the exit from the waiting room in the $2^{nd}$ floor to the bus stop. This resulted in many casualties. Fourth, although a fire receiver sent an electrical signal to the fan controller of the smoke control system, it was treated manually in the fan controller and the fan in the $2^{nd}$ floor did not work.

Development of Soil Moisture Controlling System for Smart Irrigation System (스마트 관개 시스템을 위한 토양 수분 제어시스템 개발)

  • Kim, Jongsoon;Choi, Won-Sik;Jung, Ki-Yeol;Lee, Sanghun;Park, Jong Min;Kwon, Soon Gu;Kim, Dong-Hyun;Kwon, Soon Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • The smart irrigation system using ICT technology is crucial for stable production of upland crops. The objective of this study was to develop a smart irrigation system that can control soil water, depending on irrigation methods, in order to improve crop production. In surface irrigation, three irrigation methods (sprinkler irrigation (SI), surface drip irrigation (SDI), and fountain irrigation (FI)) were installed on a crop field. The soil water contents were measured at 10, 20, 30, and 40 cm depth, and an automatic irrigation system controls a valve to maintain the soil water content at 10 cm to be 30%. In subsurface drip irrigation (SSDI), the drip lines were installed at a depth of 20 cm. Controlled drainage system (CDS) was managed with two ground water level (30 cm and 60 cm). The seasonal irrigation amounts were 96.4 ton/10a (SDI), 119.5 ton/10a (FI), and 113 ton/10a (SI), respectively. Since SDI system supplied water near the root zone of plants, the water was saved by 23.9% and 17.3%, compared with FI and SI, respectively. In SSDI, the mean soil water content was 38.8%, which was 10.8% higher than the value at the control treatment. In CDS, the water contents were greatly affected by the ground water level; the water contents at the surface zone with 30 cm ground water level was 9.4% higher than the values with 60 cm ground water level. In conclusion, this smart irrigation system can reduce production costs of upland crops.

A Study for the Fire Hazard Evaluation through the Fire Simulation of an Apartment Fire Accident (아파트 화재 사례 전산모사를 통한 화재위험성 평가에 관한 연구)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.69-78
    • /
    • 2010
  • In this study, Fire Hazards were evaluated through computer simulation using FDS program for an apartment fire accident. The results of fire simulation showed that the maximum heat release rate in the case of no sprinklers activation was 7,700 kW which was about 16 times of that in the case of sprinklers activation, 497 kW and there was a very high fire hazard due to the backdraft phenomenon when the door of fire room was forced to open. Regarding the hazard time of fire room temperature and detection time of detectors, available evacuation time was 32.5 seconds of minimum to 53.5 seconds of maximum. In the case of sprinklers activation, fire hazard in the apartment was showed to be very low due to the fire control by the spray cooling of sprinklers. This study shows that what a important function for fire safety is the activations of fire sprinkler system and emergency alarm system and what a large loss can cause if these systems don’t activate in fire accidents.

Development of remote control automatic fire extinguishing system for fire suppression in double-deck tunnel (복층터널 화재대응을 위한 원격 자동소화 시스템 개발 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong;Park, Sangheon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.167-175
    • /
    • 2019
  • To effectively deal with the fire in tunnel which is mostly the vehicle fire, it's more important to suppress the fire at early stage. In urban tunnel, however, accessibility to the scene of fire by the fire fighter is very limited due to severe traffic congestion which causes the difficulty with firefighting activity in timely manner and such a problem would be further worsened in underground road (double-deck tunnel) which has been increasingly extended and deepened. In preparation for the disaster in Korea, the range of life safety facilities for installation is defined based on category of the extension and fire protection referring to risk hazard index which is determined depending on tunnel length and conditions, and particularly to directly deal with the tunnel fire, fire extinguisher, indoor hydrant and sprinkler are designated as the mandatory facilities depending on category. But such fire extinguishing installations are found inappropriate functionally and technically and thus the measure to improve the system needs to be taken. Particularly in a double-deck tunnel which accommodates the traffic in both directions within a single tunnel of which section is divided by intermediate slab, the facility or the system which functions more rapidly and effectively is more than important. This study, thus, is intended to supplement the problems with existing tunnel life safety system (fire extinguishing) and develop the remote-controlled automatic fire extinguishing system which is optimized for a double-deck tunnel. Consequently, the system considering low floor height and extended length as well as indoor hydrant for a wide range of use have been developed together with the performance verification and the process for commercialization before applying to the tunnel is underway now.