• Title/Summary/Keyword: Spring shock absorber

Search Result 32, Processing Time 0.031 seconds

Drop Test for the UAV Landing Gear Performance Verification (무인정찰기 착륙장치 성능입증을 위한 낙하시험)

  • Shin, Jeong-Woo;Lee, Seung-Gyu;Yang, Jin-Yeol;Kim, Sung-Joon;Hwang, In-Hee;Chung, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.250-254
    • /
    • 2011
  • Main role of landing gear is to absorb the energy which is generated by aircraft lanidng and ground maneuvering. Generally, in order to absorb the impact energy during landing, oleo-pneumatic type shock absorber is used for aircraft landing gear. Oleo-pneumatic type shock absorber has a good energy absorbing efficiency and is light in weight because its structure is relatively simple. For the landing gear development, it is necessary to conduct drop test in order to verify shock absorbing performance. In the drop test, first, gas spring curve verification tests are conducted. Then, limit and reserve energy absorption drop tests are performed based on the STANAG 4671. The drop tests results with performance analysis results are presented.

  • PDF

A Study on the Shock Resistance against Underwater Explosion of Ship-born Vertical Launch Type Air-vehicle by Using the Modeling and Simulation (모델링 및 시뮬레이션 기반의 함정용 수직발사형 발사체의 수중폭발 충격에 대한 내충격성 확보 방안 연구)

  • Seungjin Lee;Jeongil Kwon;Kyeongsik You;Jinyong Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • This study examines the response when the shock by underwater explosion is transmitted to a vertical launch air-vehicle mounted on a ship using modeling and simulation, and is about a plan to increase method shock resistance to protect the air vehicle. In order to obtain an accurate mathematical model, a dynamic characteristic test was performed on similar equipment, and through this, the mathematical model could be supplemented. And, using the supplemented mathematical model, the air vehicle simulated the shock response by the underwater explosion specified in the BV043 standard. As a result of the first simulation, it was confirmed that air vehicle could not withstand shock, and air vehicle protection method using a ring spring type shock absorber was studied. In addition to the basic shape of abosber, it was confirmed that the ring spring absober can be used to increase the impact resistance of a shipborn vertical launch vehicle by performing simulations for each case by changing deseign varables.

Analytical and Experimental Studies on the design of Electromagnetic Shock Absorber (전자기식 충격흡수구조의 설계를 위한 동특성 해석 및 실험)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Im, Jae-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • A shock absorber with magnetic effects is suggested for a lunar space-ship expected to launch in 2025. The device consists of a copper steel combined tube, two magnets, and a piston. The piston is designed to move a magnet through the tube when it is pushed by an external impact. While the magnet is moving in the tube, it generates the eddy current force with the copper part of the tube and it also makes the large friction force with the steel part of the tube. Beside, it gets resistive forces against its movement such as the magnetic force with a steel-ring at the first time of the movement and the repulsive force with a same pole opposed magnet at the end time of the movement. In this thesis, results of analyses and experiments of each force are represented and the expected performance of the electromagnetic shock absorber is drawn from the results.

Design of Landing Gear Shock Absorber Using Pressure-relief Valve (Pressure-relief valve 를 적용한 착륙장치 완충장치 설계)

  • Kim, Tae-Uk;Shin, Jeong-Woo;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.508-511
    • /
    • 2008
  • The most landing gear use oleo-pneumatic shock strut to absorb the impact energy during touchdown. The shock strut is composed of the oil damper and the gas spring, especially the oil damper provides resistance force which is proportional to the square of landing speed. In case of high landing speed, the abnormal peak load can be occurred and transferred to the airframe structure. To prevent this, the pressure-relief valve is used to limit the damping force under the specific level. In this paper, it is presented the design process to find optimal damping and analysis results using pressure-relief valve.

  • PDF

Development of Active Suspension System for Wheelchairs to Improve Riding Comfort of Gait Disorders (보행 장애인의 승차감 개선을 위한 휠체어용 능동형 서스펜션 시스템 개발)

  • Heo, Yeong Jun;Jeon, Geum Sang;Lee, Sang Hun;Choi, Seong Dae;Jang, Ik Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.203-209
    • /
    • 2020
  • As the number of people with gait disorders increases, the demand for using wheelchairs increases and the area of a ctivity for people with disabilities expands, thereby they increasing the demand for riding comfortability in various driving environments. Therefore, this study is to develop an entry-level active suspension system that apply to wheelchairs and to evaluate its usability. The suspension applied in this paper consists of a coil spring, a shock absorber, a control module to control the strength of the shock absorber, and a road surface condition monitoring system. A wheelchair occupant secures the riding comfort by adjusting the coil strength of the shock absorber in 12 steps according to various road conditions. Therefore, the mechanical properties were evaluated through the structural analysis of the suspension system, and the tendency toward the magnitude of the road surface vibration attenuated according to the rigidity of the suspension through the vibration test was attempted. In conclusion, as a result of structural analysis of the suspension system, stress in a range lower than the yield strength of the material was generated, and the vibration test showed the effect of attenuating the vibration generated from the road surface when the stiffness of the suspension was adjusted.

Performance Investigation of Variable Damping Shock Attenuation Logic (가변 감쇠를 이용한 충격제어기법의 성능분석)

  • Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Launch vehicles cause several shock events during their lift-off. The excessive shock loads in the several thousands of g's level can results in permanent damage to electronics, optics and other sensitive payload components. The shock can be attenuated by mounting a shock absorber. In this paper, we proposed a semi-active control logic to attenuate the shock so that the input acceleration to main instruments does not exceed the allowable maximum acceleration value. For the performance investigation, two elements model of variable damping and spring stiffness has been used and the analysis results indicate that the proposed semi-active control logic attenuates shock level better than an optimal passive and conventional semi-active on-off control system.

Composite Skid Landing Gear Optimal Design for Light VTOL UAV (경량 수직이착륙 무인기의 복합재료 스키드 착륙장치 최적설계)

  • Lee, Jungjin;Kim, Myungjun;Kim, Yongha;Shin, Jungchan;Hwang, Kyungmin
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2015
  • In this study, we peformed optimal design of a composite skid landing gear, one of the solid spring shock absorbers, for light vertical takeoff and landing aircraft. Although a solid spring type has poor energy dissipation capability, it is commonly used for light aircraft where sink speeds are low and shock absorption is non-critical in terms of simplicity, low cost and weight reduction. In this paper, design parameters of solid spring such as sink speed, gear leg length, deflection and landing load factor were reviewed. In order to meet structural requirements such as deflection and strength, finally, we conducted optimal design of the composite skid landing gear for VTOL UAV using genetic algorithm and pattern search algorithm.

A Study on the Development of the Side Load Coil Spring (횡력발생 코일스프링 설계 및 제조에 관한 연구)

  • Kwon, H. H.;Choi, S. J.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.98-105
    • /
    • 1998
  • In the automotive suspension system, especially, Mcpherson strut type, if the resultant of the force through tire and the link reaction force is not coincident with the spring force, the side load against shock-absorber occur. The magnitude of side load is proportional to the difference between resultant force and spring force. To reduce side load, several method can be used, and one is to use the side load coil spring. This study summarize the development results of side load coil spring, i.e., how to design, analysis, manufacture, and test.

  • PDF

Natural Frequencies of a Beam on Inhomogeneous Foundation (비균질 지반위에 놓여있는 보의 고유진동수)

  • 김용철
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.69-77
    • /
    • 1992
  • The natural frequencies of a beam on elastic foundation are investigated in the present paper. The inhomogeneous elastic foundation can be modelled as a combination of distributed translational spring, rotational spring, intermediate supports and dampers. The natural frequencies and mode shapes of the system are obtained by using the Galerkin's method, and also compared with the results in the literature. Furthermore, the natural frequencies of the beam with elastically mounted masses, which can be used as vibration absorbers, are obtained by an efficient numerical scheme suggested in the present paper.

  • PDF

Analysis of Vibration Suspension Device for Trailer in Agricultural Products (농산물 수송 트레일러의 현가장치 진동 분석)

  • Hong, Jong-Ho;Lee, Seong-Beom;Park, Won-Yeob;Kim, Seong-Yeob;Wu, Yong-Gun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.437-444
    • /
    • 2012
  • This study was aimed to minimized the impact force and vibration transmitted to transporting agricultural product from the power tiller trailer by installing vibration absorption device. The vibration absorbable trailer (I) mounted with leaf spring suspension and shock absorber was developed and compared on vibration absorption performance with the existing trailer (E) equipped no vibration absorption device. In order to identify the vibration absorption effect of the trailer developed in this study, the vibration accelerations, occurred during driving on paved road with loading 360 kg of pear, were measured and analyzed using FFT analyzer. The magnitude of average vibration acceleration was decreased highly for the improved trailer mounted with vibration absorption device in comparing with existing trailer in the frequency range under 60 Hz and under 80 Hz. And similar vibration absorption effect was represented for the improved trailer in all frequency range. Especially, in the frequency range between 40 Hz and 80 Hz, the magnitude of vibration acceleration for the improved trailer was decreased with 1/3 times in comparing with existing trailer. So, the transporting loss including damage of agricultural product could be decreased highly by using the improved vibration absorbable trailer mounted with leaf spring suspension and shock absorber simultaneously, designed in this study.