• 제목/요약/키워드: Spring load

검색결과 571건 처리시간 0.034초

유정압안내면의 동적 Modeling에 관한 연구 (A Study on the Dynamics Modeling of Hydrostatic tables)

  • 노승국;이찬흥;박천홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.643-647
    • /
    • 1996
  • The dynamic behavior of hydrostatic table is represented as the theoretical model, 1-dof, 2-dof rigid body spring-damper system, and finite element model. By the experimental and theoretical methods, the validity of these models and some other dynamic behaviors, such as the effects of unbalanced load and three dimensional motion, are investigated. To make easier to consider the dynamic behavior of hydrostatic table in design process, the stiffness and damping coefficients are calculated using the simple approximation method delived from the mass flow continuity condition, and compared with experimental results.

  • PDF

사용후 핵연료 취급장비의 내진해석 (A Seismic Analysis of Spent Fuel Handling Tool)

  • 김성종;이영신;김재훈;김남균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1210-1215
    • /
    • 2002
  • The spent fuel handling tool is used to handle the refuel bundle and treated by hoist rope on the bridge crane. The new developed handling tool of NPP(Nuclear Power Plant) should be conformed the structural stability under earthquake condition. In this study, the stress and seismic analysis of the handling tool are performed by finite element method. Using the Floor Response Spectrum(FRS) obtained through the time history analysis, the modal and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) load conditions are carried out. Total 4 cases of different locations of the trolly and the hook are investigated. With the spring-damper element, the tension analysis of hoist rope is conducted. The stability of handling tool under earthquake load condition is conformed with regulatory guide.

  • PDF

고무의 전단 탄성을 이용한 방진마운트 개발 (Development of Shear Type Rubber Isolator)

  • 윤승원;이성춘
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.58-64
    • /
    • 1998
  • Rubber isolator has many advantages compared with steel spring mount. Rubber has high internal damping and can be formed various shape depending on specific purpose. On the contrary, low modulus of elasticity of rubber results the instability of rubber isolator by buckling phenomenon. This paper presents the development of shear type rubber isolator for industrial application by using shear rigidity property of rubber. The static load-deflection characteristics of developed isolator has been analyzed by the FEM. Consequently, the static load testing and a measure of the effectiveness of a vibration isolator in terms of force transmissibility for developed isolator have been carried out.

  • PDF

EDISON Co-rotational Plane beam-Dynamic tip load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • 박철우;주현식
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.246-250
    • /
    • 2015
  • In this paper, Timoshenko and Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

  • PDF

Plastification procedure of laterally-loaded steel bars under a rising temperature

  • Huang, Zhan-Fei;Tan, Kang-Hai;England, George L.
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.699-715
    • /
    • 2010
  • This paper investigates the structural responses of axially restrained steel beams under fire conditions by a nonlinear finite element method. The axial restraint is represented by a linear elastic spring. Different parameters which include beam slenderness ratio, external load level and axial restraint ratio are investigated. The process of forming a mid-span plastic hinge at the mid-span under a rising temperature is studied. In line with forming a fully plastic hinge at mid-span, the response of a restrained beam under rising temperature can be divided into three stages, viz. no plastic hinge, hinge forming and rotating, and catenary action stage. During catenary action stage, the axial restraint pulls the heated beam and prevents it from failing. This study introduces definitions of beam limiting temperature $T_{lim}$, catenary temperature $T_{ctn}$ and warning time $t_{wn}$. Influences of slenderness ratio, load level and axial restraint ratio on $T_{lim}$, $T_{ctn}$ and $t_{wn}$ are examined.

동력분산형 고속전철의 충돌안전도 설계 가이드라인 도출 (Derivation of the Standard Design Guidelines for Crashworthiness of the High-Speed EMU)

  • 김거영;조현직;구정서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.772-779
    • /
    • 2008
  • Through this study, standard design guidelines for the high speed EMU have been derived to meet the crashworthiness requirements of the Korean rollingstock safety regulation. The crashworthiness regulation requires some performance requirements for two heavy collision accident scenarios; a train-to-train collision at the relative speed of 36 kph, and a collision against a standard deformable obstacle of 15 ton at 110 kph. The complete train set will be composed of 2TC-6M with 13 ton axle load, different from KTX with the power car of 17 ton axle load. Using theoretical and numerical analyses, some crashworthy design guidelines were derived in terms of mean crush forces and energy absorptions for main crushable structures and devices. The derived design guidelines were evaluated and improved using one dimensional spring-mass dynamic simulations. It is shown from the simulation results that the suggested design guidelines can easily satisfy the domestic crashworthiness requirements.

  • PDF

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권2호
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

전개성능을 고려한 대형 전개형 SAR 안테나의 회전스프링 힌지의 강성 최적설계 (Optimal Design of Stiffness of Torsion Spring Hinge Considering the Deployment Performance of Large Scale SAR Antenna)

  • 김동연;임재혁;장태성;차원호;이소정;오현웅;김경원
    • 항공우주시스템공학회지
    • /
    • 제13권3호
    • /
    • pp.78-86
    • /
    • 2019
  • 본 연구에서는 전개성능을 고려한 대형 전개형 SAR 안테나의 회전스프링 힌지의 강성 최적설계에 대해 기술한다. 대형 전개형 SAR 안테나는 발사환경에서는 접혀 있다가 궤도에서 임무를 수행할 때 펼치게 된다. 이러한 조건에서 여러 장으로 구성된 안테나 패널을 주어진 시간 내에 최소의 충격으로 전개할 수 있도록 회전스프링 힌지의 적절한 강성을 찾는 것은 매우 중요하다. 회전스프링 강성이 강하면 완전 전개시점에서 발생하는 큰 충격하중이 구조체에 손상을 주며, 약하면 전개 저항으로 인해 완전전개를 보장할 수 없기 때문이다. 이러한 문제를 해결하기 위해서 RecurDyn을 이용한 다물체동역학 해석모델을 생성하였으며 전개해석을 통해 전개성능(전개시간 전개충격하중)을 도출하였다 최적의 회전스프링 강성을 찾기 위해 이에 따른 전개성능을 반응표면법을 통해 근사화 시켰으며 최적설계를 수행하여 적절한 회전스프링의 강성 값을 도출하였다.

차량 동역학 기반 다축 동력 전기 차량의 부하 최적화 로직 개발 (Development of Optimization Logic for Electric Vehicle with Multiple Axle Power System Based on Vehicle Dynamics)

  • 정종렬;신창우;임원식;차석원;장명언
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.8-15
    • /
    • 2013
  • Recently many kinds of electric vehicles have been developed as many governments demand the environmental friendly vehicles. In this paper, study of load optimization for the electric vehicle which has multiple axle power system was conducted. For the analysis of the vehicle which has three or four driving axles, a method based on the geometry and assumptions that considering axles as a spring model and normal forces of the axles are proportional to the displacement of the axles was applied with basic vehicle dynamics. With the developed vehicle analysis technique, algorithm to find the optimal motor operating points was developed. Using this algorithm, it was possible to find the optimization of vehicle load distribution for multiple axles according to the driving cycles. Also, control logic for the vehicle can be developed based on the optimization simulation results.