• Title/Summary/Keyword: Spring Stiffness

Search Result 671, Processing Time 0.025 seconds

Dynamic Behavior Analysis of a Reciprocating Compressor Body with Variable Rotating Speed (가변속 왕복동형 압축기 본체의 동적 거동 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.374-383
    • /
    • 2001
  • A reciprocating compressor unit with variable rotating speed driven by BLDC motor is mounted Inside hermetic chamber on an internal suspension composed of 4 roil springs and a discharge pipe. A method for predicting the dynamic behavior of compressor body is required for a reduction of transmitted vibrations. The mechanical characteristics of spring and discharge pipe stiffness properties have been obtained from experimental tests and mass moment of inertia of the compressor body iron CAD. To confirm the vibration model for the compressor body, free vibration analyses are performed with theoretical and experimental methods. results for analytical investigations on the dynamic behavior of the compressor body and the transmitted forces to the hermetic chamber through the suspension elements are Presented.

  • PDF

Modeling and Vibration Analysis of Vehicle Structures Using Equivalent Beam Stiffness for Joints (결합부 등가빔을 이용한 저진동 차체의 모델링 및 해석기법)

  • 임홍재;김윤영;이상범;송명의
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.537-542
    • /
    • 1995
  • In this paper the method of modeling and optimization for the joint of the vehicle structure is proposed. First it is described that the method of substituting equivalent beam elements to spring elements for the joint. The stiffnesses of the spring elementsare calculated using the section properties of equivalent beam elements. To get required dynamic characteristics section properties of equivalent beam element are set to design variables and optimized. The study shows that joint stiffnesses can be effectively determined in designing vehicle structure.

  • PDF

Dynamic Response of a Beam with a Spring Support Subject to a Moving Mass (탄성스프링 지지를 갖고 이동질량을 받는 보의 동적응답)

  • Lee, J.W.;Ryu, B.J.;Lee, G.S.;Song, O.S.;Lee, Y.L.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.868-873
    • /
    • 2003
  • This paper deals with the linear dynamic response of an elastically restrained beam under a moving mass, where the elastic support was modelled by translational springs of variable stiffness. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. The effects of the speed, the magnitude of the moving mass, stiffness and the position of the support springs on the response of the beam have been studied. A variety of numerical results allows us to draw important conclusions for structural design purposes.

  • PDF

Dynamic Behavior Analysis of Reciprocating Compressor Frame with Variable Rotating Speed (가변속 왕복동형 압축기 본체의 동적 거동 해석)

  • 김태종;이상민;박찬수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.362-367
    • /
    • 2001
  • A reciprocating compressor unit with variable rotating speed driven by BLDC motor is mounted inside hermetic chamber on an internal suspension composed of 4 coil springs and a discharge pipe. A method for predicting the dynamic behavior of compressor frame is required to reduce the transmitted vibration level. Mechanical characteristics such as mass, spring and discharge pipe stiffness properties are obtained with experimentation. To confirm the vibration model for compressor frame, free vibration analyses are performed with theoretical and experimental methods. Results for analytical and experimental investigations on dynamic behavior of the compressor frame are presented, and the agreement between measured and predicted results are satisfactory.

  • PDF

A study on determining the minimum vertical spring stiffness of track pad considering running safety. (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim Jeong-ll;Yang SinChu;Kim Yun-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.842-847
    • /
    • 2004
  • This study presents the minimum spring stiffness of resilient track pad considering the safety of running train. A nonlinear static 3-D finite element is used for the modeling of railway superstructure, especially for the reflection of nonlinear resistance of rail fastening system. Moreover, ballast is considered as an elastic foundation. As the input load, eccentric wheel and lateral force are used and they are derived from ' Lateral-force/Wheel-load Estimation Equations '. Analysis results are compared with following two values : allowable lateral displacement of rail head (derived from the geometrical derailment evaluation of wheel/rail) and operation standard value (derived from the field test results of track).

  • PDF

A Study on the Flexural and Torsional Vibration of Two Stage Gear System (2단 치차장치의 굽힘과 비틀림 진동에 관한 연구)

  • 정태형;최정락;이정상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.99-104
    • /
    • 1999
  • In this paper, dynamic behavior of a two stage gear train system is analyzed. This system consists of three shafts supported by ball bearing at the ends of them and two pairs of spur gear sets. For exact analysis, the meshing tooth pair of gears is modeled as spring having time-dependent meshing stiffness and damping. The result of this analysis is compared to that of analysis using other model of spring having mean mesh stiffness. The effect of the excitation force by the imbalance of a rotor of a motor on the vibration of a gear train system is also analyzed. Finally, the change of a natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF

A Study on the Blankholding Force in Deep Drawing Process (디프 드로잉 가공시 블랭크 홀더력에 관한 연구)

  • 이종국;강명순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.886-900
    • /
    • 1989
  • The purpose of this paper is to obtain the effect of blankholding force in deep drawing process. Flange deformation is analysed by theoretical approach in order to apply the optimum blankholding force to the blank. As the result, the upper and lower blankholding force is determined in terms of variables in deep drawing process. Experiment are carried out with the high stiffness spring-type blankholder system. Theoretical upper blankholding force are relatively good agreement with experimental result and the range of initial blankholding forces for various materials tested are found by experiment.

The Relation of Bending Buckling Strength in Vehicle and Three Point Bending Maximum Strength of Door Impact Beam (도어 임팩트 빔의 3점 굽힘 최대강도와 차량 장착 시 굽힘 좌굴강도와의 관계)

  • Kang, Sungjong;Lee, Sangmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.40-47
    • /
    • 2019
  • First, three point bending analysis for the inclined press door impact beam was carried out to investigate inclination angle effect on the maximum strength with varying support distance. Next, for the system model with spring elements representing body stiffness at door mounting area, the bending structural behavior of impact beam mounted on vehicle was estimated. The mounting distance and inclination angle were changed and the beam bending buckling strength was presumed at the head displacement below which spring stiffness change has little effect on the load. Finally strength ratio to predict the bending buckling strength of impact beam mounted on vehicle from three point bending maximum strength of fixed support distance was suggested.

On complex flutter and buckling analysis of a beam structure subjected to static follower force

  • Wang, Q.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.533-556
    • /
    • 2003
  • The flutter and buckling analysis of a beam structure subjected to a static follower force is completely studied in the paper. The beam is fixed in the transverse direction and constrained by a rotational spring at one end, and by a translational spring and a rotational spring at the other end. The co-existence of flutter and buckling in this beam due to the presence of the follower force is an interesting and important phenomenon. The results from this theoretical analysis will be useful for the stability design of structures in engineering applications, such as the potential of flutter control of aircrafts by smart materials. The transition-curve surface for differentiating the two distinct instability regions of the beam is first obtained with respect to the variations of the stiffness of the springs at the two ends. Second, the capacity of the follower force is derived for flutter and buckling of the beam as a function of the stiffness of the springs by observing the variation of the first two frequencies obtained from dynamic analysis of the beam. The research in the paper may be used as a benchmark for the flutter and buckling analysis of beams.

Modeling and Experimental Response Characterization of the Chevron-type Bi-stable Micromachined Actuator (Chevron형 bi-stable MEMS 구동기의 모델링 및 실험적 응답특성 분석)

  • 황일한;심유석;이종현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.203-209
    • /
    • 2004
  • Compliant bi-stable mechanism allows two stable states within its operation range staying at one of the local minimum states of the potential energy. Energy storage characteristics of the bi-stable mechanism offer two distinct and repeatable stable states, which require no power input to maintain it at each stable state. This paper suggests an equivalent model of the chevron-type bi-stable microactuator using the equivalent spring stiffness in the rectilinear and the rotational directions. From this model the range of spring stiffness where the bi-stable mechanism can be operated is analyzed and compared with the results of the FEA (Finite Element Analysis) using ANSYS for the buckling analysis, both of which show a good agreement. Based on the analysis, a newly designed chevron-type bi-stable MEMS actuator using hinges is suggested for the latch-up operation. It is found that the experimental response characteristics of around 36V for the bi-stable actuation for the 60$mu extrm{m}$ stroke correspond very well to the results of the equivalent model analysis after the change in cross-sectional area by the fabrication process is taken into account. Together with the resonance frequency experiment where 1760Hz is measured, it is shown that the chevron-type bi-stable MEMS actuator using hinges is applicable to the optical switch as an actuator.