• Title/Summary/Keyword: Spreading uniformity

Search Result 16, Processing Time 0.024 seconds

The Effects of Compassion and Virtue experienced by police officer on Organizational Identification : Mediating effects of positive emotions and moderating effect of collective self-esteem (경찰관들이 경험하는 컴페션(Compassion)과 미덕(Virtue)이 조직 동일시에 미치는 영향: 긍정적 감정의 매개효과와 집단적 자긍심의 조절효과)

  • Jo, Seung-Won
    • Journal of Digital Convergence
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2019
  • The purpose of this study is to verify the effect of the compaction and virtue experienced by police officers in the organization on positive emotion and, second, to demonstrate the effect of positive emotion on the organization uniformity, which is subordinate variable. Third, we intend to verify the mediated effect of positive emotion in the relationship between compassion and organization uniformity, and fourthly, to demonstrate the coordination effect of collective self-esteem in the relationship between positive emotion and organization identicalness. Sampling of this study was conducted on 353 male and female police officers working at police stations belonging to the National Police Agency and used these samples for hypothesis testing. Studies have confirmed that the compaction and virtue experienced by police officers have a positive effect on positive emotion, and that positive emotion has a positive effect on the phenomenon of tissue co-ordination. And it has been shown that positive emotion plays a full role in the relationship between compassion, virtue and organizational co-ordination, and that positive emotion and collective self-esteem plays a controlling role in the relationship with organizational co-ordination. The theoretical implications of this study will contribute to creating a positive organizational culture by maintaining a strict hierarchical relationship and spreading the compaction and virtuous behavior to police organizations with high task stress.

Development of Liquid Fertilizer Spreading System for a Sloped Land (경사지용 가축분뇨 액비 살포장치 개발)

  • Oh, I.H.;Jang, C.H.;Kim, W.K.;Song, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2010
  • A major problem within the agricultural/farming community concerns the enormous amount of manure produced by livestock; one possible solution to this problem is to use the animal slurry as a liquid fertilizer. While there are several areas where this fertilizer could be used, one promising area of application is within chestnut tree fields. However, since most of these fields are located on slopes of varying grades and not on flat land, a different spread system is required. Generally, chemical fertilizer is spread in the chestnut field manually by hand; not only does this require a great deal of manpower it is also very difficult and hard work. In our lab experiment, we investigated the relationship between the amount of fertilizer spread and the length of pipe used at varying pressure levels. The hose in our system utilized PVC piping with evenly spaced holes for the fertilizer to dissipate. We initially found that the amount of spread was greatly reduced by reducing pipe pressure. While the difference of the amount of spread during fertilizing was not great, we did find that the reduction of the spread could be correlated to the frictional resistance of the inner lining of the pipe. Based on this, we hypothesized that an increase in pipe pressure would yield a consistent spread. Additionally, a similar outcome could be obtained by regulating the distance of the holes in the pipe and their diameter.

Tunnel Magnetoresistance with Plasma Oxidation Time in Double Oxidized Barrier Process (2단계 AlOx 절연층 공정에서 하부절연층의 산화시간에 따른 터널자기저항 특성연구)

  • Lee, Young-Min;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.200-204
    • /
    • 2002
  • We fabricated TMR devices which have double oxidized tunnel barrier using plasma oxidation method to form homogeneously oxidized AlO tunnel barrier. We sputtered 10 $\AA$-bottom Al layer and oxidized it by varying oxidation time for 5, 10, 20 sec. Subsequent sputtering of 13 $\AA$ - Al was performed and the matallic layer was oxidized for 120 sec. The electrical resistance changed from 700$\Omega$ to 2700$\Omega$ with increase of oxidation time, while variation of MR ratio was little spreading 27~31% which is larger than that of TMR device of ordinary single tunnel barrier. We calculated effective barrier height and width by measuring I-V curves, from which we found the barrier height was 1.3~1.5 eV, sufficient for tunnel barrier, and the barrier width(<16.2 $\AA$) was smaller than that of directly measured value by the tunneling electron microscopy. Our results may be caused by insufficient oxidation of Al precursor into $Al_2O_3$. However, double oxidized tunnel barriers were superior to conventional single tunnel barrier in uniformity and density. We found that the external magnetic field to switch spin direction of ferromagnetic layer of pinned layer breaking ferro-antiferro exchange coupling was increased as bottom layer oxidation time increased. Our results imply that we were able to improve MR ratio and tune switching field by employing double oxidized tunnel barrier process.

Tunnel Magnetoresistance with Top Layer Plasma Oxidation Time in Doubly Oxidized Barrier Process (이중 절연층 공정에서 상부절연층의 산화시간에 따른 터널자기저항 특성연구)

  • Lee, Ki-Yung;Song, Oh-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.3
    • /
    • pp.99-102
    • /
    • 2002
  • We fabricated TMR devices which have doubly oxidized tunnel barrier using plasma oxidation method to form homogeneously oxidized AlO tunnel barrier. We sputtered 10 $\AA$-bottom Al layer and oxidized it with oxidation time of 10 sec. Subsequent sputtering of 13 $\AA$-Al was performed and the metallic layer was oxidized for 50, 80, and 120 sec., respectively. The electrical resistance changed from 500 Ω to 2000 Ω with increase of oxidation time, while variation of MR ratio was little spreading 27∼31 % which is larger than that of TMR device of ordinary single tunnel barrier. We calculated effective barrier height and width by measuring I-V curves, from which we found the barrier height was 1.3∼1.8 eV sufficient for tunnel barrier, and the barrier width (<15.0 $\AA$) was smaller than physical thickness. Our results may be caused by insufficient oxidation of Al precursor into A1$_2$O$_3$. However, doubly oxidized tunnel barriers were superior to conventional single tunnel barrier in uniformity and density. Our results imply that we were able to improve MR ratio and tune resistance by employing doubly oxidized tunnel barrier process.

Fabrication and Performance Evaluation of MR-16 Lamp Series with Narrow Angular Distribution of Luminous Intensity Using an Aspherical Planar-convex 2×2 Fly-eye Lens Type (평면-비구면 2×2 fly-eye 렌즈형태의 2차 렌즈를 사용한 고효율의 좁은 배광각을 갖는 MR-16 램프 시리즈 제작 및 성능평가)

  • Chu, Kyung-duk;Ryu, Jae Myung;Hong, Chun-Gang;Jeong, Youn Hong;Jo, Jae Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.25-33
    • /
    • 2017
  • This paper reports the optical design of the MR-16 lamp series with a LED second lens and an aspherical plano-convex lens suitable for a simple and rapid injection molding fabrication method. The fabrication and performance evaluation of the MR-16 lamp series, which was designed with a narrow angular distribution of luminous intensity, were conducted to replace halogen lamps with LED lamps. Four types of LED lamps were fabricated, which have angular distributions of luminous intensity of $22.4^{\circ}$, $31.1^{\circ}$, $37.3^{\circ}$, and $59.9^{\circ}$ and luminous efficiencies of 76.5 lm/W, 75.2 lm/W, 72.0 lm/W, and 77.8 lm/W, respectively, while their spreading angles with an illuminance uniformity of 81% were $3^{\circ}$, $15^{\circ}$, $22^{\circ}$, and $49^{\circ}$, respectively. After eliminating a yellow tail of the LED lamps using a diffusion sheet, the angular distributions of the luminous intensity were measured to be $20.8^{\circ}$, $31.5^{\circ}$, $37.8^{\circ}$, and $68.7^{\circ}$.

A Study on the Improvement of Skin-affinity and Spreadability in the Pressed Powder using Air Jet Mill Process and Mono-dispersed PMMA (Air Jet Mill 공법과 PMMA의 단분산성이 프레스드 파우더의 밀착성 및 발림성 향상에 대한 연구)

  • Song, Sang Hoon;Hong, Kyong Woo;Han, Jong Seob;Kim, Kyong Seob;Park, Sun Gyoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • The key quality attributes of the pressed powder, one of base makeup products, are skin-affinity and spreadability. In general, there was a limit to meet skin-affinity and spreadability simultaneously, which are opposite attributes each other. In this study, air jet mill process was tried to satisfy two main properties. Skin-affinity was improved by a wet coating of sericite with a mixture of lauroyl lysine (LL) and sodium cocoyl glutamate (SCG). The application of mono-dispersed polymethyl methacrylate (PMMA) and diphenyl dimethicone/vinyl diphenyl dimethicone/silsesquioxane crosspolymer (DDVDDSC) improved both qualities. Air jet mill process has been mainly applied in the pharmaceutical and food industries, and is a method used for processing powder materials in cosmetic field. In this study, we were able to complete makeup cosmetics with an optimum particle size $6.8{\mu}m$ by combining the air jet mill process at the manufacturing stage. It was confirmed that the Ti element was uniformly distributed throughout the cosmetics by EDS mapping, and that the corners of the tabular grains were rounded by SEM analysis. It is considered that this can provide an effect of improving the spreadability when the cosmetic is applied to the skin by using a makeup tool. LL with excellent skin compatibility and SCG derived from coconut with little skin irritation were wet coated to further enhance the adhesion of sericite. SEM images were analyzed to evaluate effect of the dispersion and uniformity of PMMA on spreadability. With the spherical shapes of similar size, it was found that the spreading effect was further increased when the distribution was homogeneously mono-dispersed. The dispersion and spreadability of PMMA were confirmed by measuring the kinetic friction and optimal content was determined. The silicone rubber powder, DDVDDSC, was confirmed by evaluating the hardness, spreading value, and drop test. Finally, it was found that the dispersion of PMMA and silicone rubber powder affected spreadability. Such makeup cosmetics have excellent stability in drop test while having appropriate hardness, and good stability over time. Taken together, it is concluded that air jet mill process can be utilized as a method to improve skin-affinity and spreadability of the pressed powder.