• Title/Summary/Keyword: Spraying vehicle

Search Result 23, Processing Time 0.024 seconds

Study on Experimental Verification of Uniform Control using Agricultural Drone (농업용 방제 드론을 이용한 균일 방제에 관한 실험적 검증)

  • Wooram Lee;Sang-Beom Lee; Jin-Teak Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.575-580
    • /
    • 2023
  • This study was prevent the decrease in crop output by insect pests and spraying by application uniformity. A flight level 4 m height and 4-5 m/sec. speed are difficult to maintain with a agricultural drone for aerial application, which has been affected by the methods or environmental factors, such as changes in the wind. Therefore, which can allow a controlled application width and spray rate automatically and verified experimentally using drone. The sprayed particles began to decrease from about 3.75 m on the left and right sides of the spray nozzle. According to the number of particles, the effective spraying width was observed to be about 7.5 m, and it was verified that the proposed spraying system was effective in uniform control system.

Development of Autonomous Sprayer Considering Tracking Performance on Geometrical Complexity of Ground in Greenhouse

  • Lee, Dong Hoon;Lee, Kyou Seung;Cho, Yong Jin;Lee, Je Yong;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.287-295
    • /
    • 2012
  • Purpose: Some of the most representative approaches are to apply next generation technologies to save energy consumption, fully automated control system to appropriately maintain environmental conditions, and autonomous assistance system to reduce labor load and ensure operator's safety. Nevertheless, improvement of upcoming method for soil cultured greenhouse has not been sufficiently achieved. Geometrical complexity of ground in protected crop cultivation might be one of the most dominant factors in design of autonomous vehicle. While there is a practical solution fairly enough to promise an accurate travelling, such as autonomous sprayer guided by rail or induction coil, for various reasons including the limitation of producer's budget, the previously developed sprayer has not been widely distributed to market. Methods: In this study, we developed an autonomous sprayer considering travelling performance on geometrical complexity of ground in soil cultured greenhouse. To maintain a stable travelling and to acquire a real time feedback, common wire with 80 mm thick and body frame and sprayer boom. To evaluate performance of the prototype, tracking performance, climbing performance and spraying boom's uniform leveling performance were individually evaluated by corresponding experimental tests. Results: The autonomous guidance system was proved to be sufficiently suitable for accurate linear traveling with RMS as lower than approximately 10 cm from designated path. Also the prototype could climb $10^{\circ}$ of ground's slope angle with 40 kg of water weight. Uniform leveling of spraying boom was successfully performed within $0.5^{\circ}$ of sprayer boom's slope. Conclusions: Considering more complex pathways and coarse ground conditions, evaluations and improvements of the prototype should be performed for promising reliability to commercialization.

Experimental Vrification of the Sray Clculation using the Aricultural Done (농업용 방제드론의 방제면적 산출에 따른 실험적 검증)

  • Wooram Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.569-576
    • /
    • 2023
  • An agricultural drones are gradually increasing in utilization due to economic efficiency, and consist of a main frame in charge of flying spray system in charge of moving pesticide to control targets. Therefore, the environment and characteristics of crops should be considered when controlling pesticides using drones and conditions such as systematic flying altitude of flight, speed, and spray time should be changed accordingly. However, pest control work using agricultural drones has different spray effects depending on level the operation proficiency and spray impact. In addition, there are variations in operating standards and control efficiency for agricultural drones, which hinder the distribution of agricultural control drones in the field of pest control work. Therefore, this study attempts to identify the spraying characteristics of agricultural drones, apply the effective spraying time, interval and experimentally verify the system that can calculation of spray area compared to previous studies. Through this experimental verification, it is intended to apply the optimal control process by minimizing the obstacles to pest control work by applying the operation method and systematic figures to agricultural drones.

The Effect of Cleaning the Intake System of LPG Vehicles on Engine and Emissions (LPG차량 흡기계통 Cleaning이 엔진 및 배출가스에 미치는 영향)

  • Hong, Sung-In;Lee, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1229-1235
    • /
    • 2014
  • At the LPG vehicle air intake system, most of dust particles in the air cleaner are removed. However very small particles are not removed and accumulated. The accumulation of carbon in air intake system is going to affect the idle speed control and sensor signal. It also causes engine chattering and transmission troubles of automatic transmission. This is study about cleaning up intake system using cleaning chemical. We can clean up the intake system by spraying cleaning liquid onto intake device when the engine is idling after intake hose is removed from warmed up vehicle. We can obtain the following experimental results by cleaning up ISC, surge tank, intake manifold, intake valves and combustion chamber. According to this results, the stroll valve works correctly and power rate of engine is up to the standard, it is smoothy to control the idling speed when a vehicle pulls up. After cleaning up CO grow down about 0.15%, HC does about 20~100 ppm.

A Study on the Design Stability Verification of Multi-purpose Smart Elevation Work Vehicle (다목적 직립형 스마트 고소작업차 설계 안정성 검증에 대한 연구)

  • Jae-Hyun, Jo;Jin-Hyoung, Jeong;Seung-Hun, Kim;Sang-Sik, Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.449-456
    • /
    • 2022
  • Recently, fruit farms such as apples tend to have higher productivity and reduce pesticide spraying, and demand in Southeast Asia continues to increase as technology for high-grade work vehicles in the Philippines and Korea's agricultural high-grade work vehicles rise to 3,300mm to 3,800mm, so workers can work at only 4.5m. Therefore, this paper is a study to develop a multi-purpose upright smart high-altitude work vehicle that can secure a work space of more than 7m, up 5.5m, and a structural analysis for design and verification of Multi-purpose Smart Elevation Work Vehicle

Properties of De/Anti-icing Fluid for High Speed Railway Rolling Stock Based on Propylene-glycol Containing Water Repellent Agent (발수 성분을 포함하는 프로필렌글리콜(PG) 기반 고속철도차량용 제·방빙액의 특성)

  • Jin-Myeong, Park;Tae-Hyun, Kim;Jung-Mu, Yang;Cha-Jung, Yun;Hong-Ki, Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.69-74
    • /
    • 2023
  • As a chemical de-icing method, propylene glycol de-icing fluid is applicable for melting ice caused by snow and ice adhering to the lower part of high-speed rail rolling stock and bogie parts in winter. By spraying propylene-glycol de-icing fluid on high-speed rail rolling stock and bogie parts in advance to minimize snow adhesion, ice-melting efficiency can be further improved. In the case of high-speed rail rolling stock, even if propylene-glycol de-icing fluid is sprayed, the anti-icing performance is poor because the fluid is almost lost on the surface of the vehicle when operating at high speed. In this study, in order to prevent freezing caused by snow and ice adhering to the lower part of high-speed rail rolling stock and bogie parts, we have investigated the properties of propylene-glycol de/anti-icing fluid containing water-repellent agents that prevent surface freezing. We tried to find the optimal component for de/anti-icing fluid for high-speed rail rolling stock by evaluating the ice melting performance, contact angle, and anti-icing performance according to the types of water-repellent agent. As a result of the evaluation, it was confirmed that an de/anti-icing fluid containing an ethoxysilane-type water repellent agent was most suitable.

Development of Collision Prevention System for Agricultural Unmanned Helicopter (LiDAR를 이용한 농업용 무인헬기 충돌방지시스템 개발)

  • Jeong, Junho;Gim, Hakseong;Lee, Dongwoo;Suk, Jinyoung;Kim, Seungkeun;Kim, Jingu;Ryu, Si-dae;Kim, Sungnam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.611-619
    • /
    • 2016
  • This paper proposes a collision prevention system for an agricultural unmanned helicopter. The collision prevention system consists of an obstacle detection system, a mapping algorithm, and a collision avoidance algorithm. The obstacle detection system based on a LiDAR sensor is implemented in the unmanned helicopter and acquires distance information of obstacles in real-time. Then, an obstacle mapping is carried out by combining the distance to the obstacles with attitude/location data of the unmanned helicopter. In order to prevent a collision, alert is activated to an operator based on the map when the vehicle approaches to the obstacles. Moreover, the developed collision prevention system is verified through flight test simulating a flight pattern aerial spraying.

Development of a Path Generation and Tracking Algorithm for a Korean Auto-guidance Tillage Tractor

  • Han, Xiong-Zhe;Kim, Hak-Jin;Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: Path planning and tracking algorithms applicable to various agricultural operations, such as tillage, planting, and spraying, are needed to generate steering angles for auto-guidance tractors to track a point ahead on the path. An optimal coverage path algorithm can enable a vehicle to effectively travel across a field by following a sequence of parallel paths with fixed spacing. This study proposes a path generation and tracking algorithm for an auto-guided Korean tractor with a tillage implement that generates a path with C-type turns and follows the generated path in a paddy field. A mathematical model was developed to generate a waypoint path for a tractor in a field. This waypoint path generation model was based on minimum tractor turning radius, waypoint intervals and LBOs (Limit of Boundary Offsets). At each location, the steering angle was calculated by comparing the waypoint angle and heading angle of the tractor. A path following program was developed with Labview-CVI to automatically read the waypoints and generate steering angles for the tractor to proceed to the next waypoint. A feasibility test of the developed program for real-time path tracking was performed with a mobile platform traveling on flat ground. The test results showed that the developed algorithm generated the desired path and steering angles with acceptable accuracy.

Case Study: Cost-effective Weed Patch Detection by Multi-Spectral Camera Mounted on Unmanned Aerial Vehicle in the Buckwheat Field

  • Kim, Dong-Wook;Kim, Yoonha;Kim, Kyung-Hwan;Kim, Hak-Jin;Chung, Yong Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.159-164
    • /
    • 2019
  • Weed control is a crucial practice not only in organic farming, but also in modern agriculture because it can lead to loss in crop yield. In general, weed is distributed in patches heterogeneously in the field. These patches vary in size, shape, and density. Thus, it would be efficient if chemicals are sprayed on these patches rather than spraying uniformly in the field, which can pollute the environment and be cost prohibitive. In this sense, weed detection could be beneficial for sustainable agriculture. Studies have been conducted to detect weed patches in the field using remote sensing technologies, which can be classified into a method using image segmentation based on morphology and a method with vegetative indices based on the wavelength of light. In this study, the latter methodology has been used to detect the weed patches. As a result, it was found that the vegetative indices were easier to operate as it did not need any sophisticated algorithm for differentiating weeds from crop and soil as compared to the former method. Consequently, we demonstrated that the current method of using vegetative index is accurate enough to detect weed patches, and will be useful for farmers to control weeds with minimal use of chemicals and in a more precise manner.

A Study on the Bonding Strength Analysis according to the Surface Treatment Characteristics of Aluminum Bar-Cowl Cross Member of Composite Material Injection Insert (복합소재 사출인서트 알루미늄 바 카울크로스멤버 표면처리 특성에 따른 접합강도 분석 연구)

  • Son, Dong il;So, Sangwoo;Hwang, Hyuntae;Choi, Dong hyuk;Choi, Wan gyu;Kim, Sun kyung;Kim, Dae il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.360-364
    • /
    • 2020
  • Although research and development of existing steel-made Cowl Cross Member(CCM) was carried out with magnesium and plastic to make vehicles lighter, it is difficult to apply them to performance problems in the vehicle's mounting condition. Recently, the company is conducting research on the injection CCM of the composite insert as a lightweight component that is most suitable for mass-production of automotive parts. This is a manufacturing process that inserts composite injection bracket parts into aluminum bar, and the adhesion of the two parts is one of the important factors considering the vehicle's mounting conditions. In this study, the joint strength of Aluminum bar is one of the important factors as a study for the injection of aluminum bar into PA6-GF60 composite material. For the analysis of these research, the method of spraying adhesive to the aluminum bar and the case of knurling treatment have been analyzed and the bonding strength of the direction of rotation and lateral direction has been analyzed for each part between the aluminum bar of the cowl cross member and the shape of the injection component of composite materials.