• Title/Summary/Keyword: Spraying cooling

Search Result 42, Processing Time 0.033 seconds

Development of CFD Model for Estimation of Cooling Effect of Fog Cooling System in Greenhouse (온실 포그냉방시스템의 냉방효과 예측을 위한 CFD 모델의 개발)

  • 유인호;김문기;권혁진;김기성
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.93-100
    • /
    • 2002
  • This study was carried out not only to develop CFD model for numerically simulating fog cooling system but also to verify the validity of the developed model by data measured in fag cooling greenhouse. In addition the developed model was applied to investigate the effects of spraying water temperature, spraying water amount, spraying interval and evaporation percentage on the performance of the fog cooling system. According to the simulation results, the temperature differences between the measured and predicted temperatures at each measurement point were $0.1~1.4^{\circ}C$ in case of no shading and $0.2~2.3^{\circ}C$ in close of shading. The humidity differences were 0.3~6.0% and 0.7~10.6%, respectively in the cases of no shading and shading. Because the predicted data showed a good agreement with the measured ones, the developed model is supposed to be able to predict the cooling effect of the fog cooling system. The performance of fog cooling system was greatly influenced by spraying water amount, spraying interval and evaporation percentage, but it was not influenced by spraying water temperature.

Effects of Vacuum Cooling Followed by Water Spraying on the Quality of Precooked Skipjack Katsuwonus pelamis (진공분무 냉각에 의한 자숙 가다랑어(Katsuwonus pelamis)의 냉각 및 품질 특성에 관한 연구)

  • Lee, Tae-Hun;Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.1
    • /
    • pp.12-17
    • /
    • 2014
  • The cooling of precooked skipjack Katsuwonus pelamis is a critical thermal process in tuna canning because it affects the quality and yield of the canned tuna, as well as productivity. The combined method of vacuum cooling followed by water spraying (VC-WS) was investigated to increase cooling rates, and prevent loss of yield of the precooked tuna during vacuum cooling. For VC-WS, the precooked skipjack was cooled to $30^{\circ}C$ by vacuum at 31 mmHg and then wetted by spraying water for 2 min. The effects of VC-WS on cooling times, cooling loss, color, texture and lipid oxidation of the precooked tuna were compared with conventional spray cooling (SC).The cooling times for precooked skipjack from $75^{\circ}C-30^{\circ}C$ were 11 min for VC-WS and 145 min for SC. The cooling losses were 1.7 % for VC-WS and 1.6 % for SC. Peroxide and thiobarbituric acid (TBA) values of VC-WS were lower than those of SC. The loin of the VC-WS-treated skipjack was brighter and harder than the SC loin, as indicated by higher lightness and hardness values. Based on these results, we believe that the VC-WS process could compensate for the cooling loss of vacuum cooling and minimize changes in quality that occur during cooling of precooked skipjack tuna.

A Draft Proposal for Functional Pesticide Protection Clothing Using a Cooling Blower Unit (냉각 송풍장치를 이용한 기능성 농약방제복의 구성시안 제안에 관한 연구)

  • Oh, Young Soon;Lee, Kyung Suk;Chae, Hye Seon;Kim, Kyung Ran
    • The Korean Journal of Community Living Science
    • /
    • v.25 no.4
    • /
    • pp.557-566
    • /
    • 2014
  • This study examines he trend in the development of protective clothing for pesticide spraying based on materials with domestic patents and proposes pesticide protection clothing using a cooling blower unit effective for reducing heat stress in pesticide spraying. There was a total of 54 domestic patents on protective clothing related to pesticide spraying, reflecting a sharp increase based on the increasing demand for protective clothing since 2000. Protective clothing with a lower level of heat stress as the core technology accounted for 35.2% of these patents, and recent years have witnessed the increased development of protective clothing supplying cold air to the interior of the clothing through a separate device. However, this may cause some inconvenience in the activity of farmers. Therefore, this study proposes a lightweight cooling blower unit that does not hinder the user's appearance and activity. In the cooling blower unit, contaminated air from outside is purified through a filter and cools down as it passes a cooling device with refrigerant in the copper pipe. This chilled air is supplied to the interior of the clothing through a bidirectional inhaling blower. The proposed protective clothing is an overall with raglan sleeves. Its chill injection site has an area where the most conspicuous change in temperature is selected, and at the back, there is a large pocket for a cooling blower unit.

A prediction of mold temperature distribution and lifetime with different spray process of mold release agent in high pressure diecasting mold using computer simulation (컴퓨터 시뮬레이션을 이용한 고압다이캐스팅 금형의 이형제 분사공정에 따른 금형온도분포 및 금형수명 예측)

  • Kim, Dong-Hyun;Yoon, Sang-Il;Chang, Dae-Jung
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.49-53
    • /
    • 2019
  • The temperature distribution and lifetime of molds were predicted by computer simulation analysis with various spraying and blowing process of high pressure die casting. After varying the spraying angle and time, the mold temperature, heat exchange and mold life were predicted. As the spraying angle increases, the maximum temperature of the mold decreases, which is because the spraying area increases and the heat exchange with the mold increases. Heat exchange occurs more actively in the blowing process than in the spraying process. This is because the cooling is not performed due to the steam generation. When the spraying angle is 50 degree, the minimum life of the mold is analyzed 200 times. After adjusting the blowing time from 5s to 3s, the minimum lifetime of the mold has been increased almost twice.

Thermal Analysis Comparison of IMO with USCG Design Condition for the INGC During the Cool-down Period (급냉각기간에서 IMO설계조건과 USCG 설계조건에 대한 LMGC 화물탱크의 열해석 비교)

  • Lee, Jung-Hye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1390-1397
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000㎥ class GT-96 membrane type LNG carrier under IMO and USCG design condition. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls down from -4$0^{\circ}C$ to -l3$0^{\circ}C$, and the spraying rate for the cooling of the insulation wall increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the first barrier and the first insulation, which are among the insulation wall, especially in the top side of the insulation wall under IMO and USCG design condition. Also, as the NG temperature distribution is fixed, the outer temperature condition under the design condition has influence on the temperature variation at the insulation. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted under IMO and USCG design condition. From the comparison between two conditions; IMO design condition shows more severe temperature gradient than USCG design condition, therefore, it provides the conservative estimation of the BOG.

Thermal Analysis for the GT-96 Membrane Type LNGC during the Cool-down Period (GT-96 멤브레인형 LNGC의 급냉기간에서의 열해석)

  • Lee, Jung-Hye;Choi, Hyun-Kue;Choi, Soon-Ho;Oh, Cheol;Kim, Myoung-Hwan;Kim, Kyung-Kun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1346-1351
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000 $m^3$ class GT-96 membrane type LNG carrier under IMO design condition. The cool-down is performed to cool the insulation wall and the natural gas in cargo tank for six hours to avoid the thermal shock at the start of loading of $-163^{\circ}C$ LNG. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls clown from $-40^{\circ}C$ to $-130^{\circ}C$ and the spraying rate for the insulation wall cooling increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the 1 st barrier and 1st insulation, which are among the insulation wall, especially in the top side of the insulation wall. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted.

  • PDF

Evaluation of Cooling Effects in Greenhouses with Mist System at Variations of Spraying or Non-spraying Time Durations (미스트 분무시간 및 휴지시간 변화에 따른 하우스 냉각효과 검토)

  • 허종철;최동호;임종환;서효덕
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.59-62
    • /
    • 1999
  • 1. 미스트를 장시간 분사시킬 경우 분사기간동안 온도강하는 분사량에 무관하게 일정하나 분사종료 후 온도상승은 분사량이 많으면 온도상승이 현저히 지연된다. 반면 증가된 습도는 장시간 유지되기 때문에 적정 분사량이 존재한다. 2. 시설하우스내 고온장애와 습도장애를 극복하고 보다 유리한 실내환경을 유지하기 위해서는 적정 미스트 분무량을 유지시켜야 하며 동시에 분무시간과 휴지시간을 충분히 고려해야만 한다.

  • PDF

Fabrication and Characteristics of Thermal Sprayed Ni-Cr-B-Si System Amorphous Coatings (Ni-Cr-B-Si계 비정질 용사피막의 제조 및 특성)

  • 정하윤;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.53-59
    • /
    • 1999
  • Amorphous alloys have also been called glassy alloys or non-crystalline alloys. They are made by the rapid solidification. The solidification occurs so rapid that the atoms are frozen in their liquid configuration. There are unique magnetic, mechanical, electrical and corrosive behaviors which result form their amorphous structure. In the study. amorphous coatings were manufactured with Ni-Cr-B-Si powders by flame spray. Measurement of hardness, were resistance, corrosion resistance and observation of microstructures and XRD, DSC were performed to investigate characteristics of amorphous coatings. The experimental results obtained as follow: 1) Amorphous powders could not be manufactured with the spraying in the spraying in the liquid nitrogen. But, amorphous coatings could be manufactured with the rotation cooling method by liquid nitrogen. In the fabrication of amorphous coatings, major factor was the rapid cooling by rotation of the substrate. 2) Hardness of coatings was obtained Hv 960 by formation of amorphous phase. But, wear resistance decreased. That was due to porosity in the coatings by the rapid cooling. 3) In the case of corrosion resistance, amorphous coatings were superior to air-cooled coatings. That was due to formation of amorphous phase. 4) After amorphous coatings were heat-treated at 520℃ for 1hr. hardness increased 80% and wear resistance increased 30% comparing with air cooled coatings. These were due to crystallization of amorphous phase and decrease of porosity by heat-treatment.

  • PDF

Minispangling of a Hot Dip Galvanized Sheet Steel by a Solution Spray Method (수용액 분사법에 의한 용융아연 도금강판의 미니스팡글 형성)

  • 김종상;전선호;박정렬
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.149-157
    • /
    • 1994
  • The formation of spangles on a hot dip galvanized sheet steel by spray cooling the molten zinc coating with air, water and 2.0wt% $NH_4H_2PO_4$ solution has been studied performing laboratory experiments, and their coating properties have been evaluated. Minimized spangles were easily formed by mist spraying the solution for 1 second at the low nozzle spray pressure onto the molten zinc at 420~$422^{\circ}C$ because the solute $NH_4H_2PO_4$ in the sprayed solution imparted a highly rapid cooling effect to the coating through its endothermic de-composition reactions and because the decomposed products acted as numerous nucleation sites for the mini-mized spangles on the coating. Good surface appearances sand sound coating properties were obtained on this coating. Only regular spangles were formed on the coating by the forced convective air cooling. At the high nozzle spray pressure, zero spangles were formed on the coating by the pure water spray cooling. However, the coating had a dull and rough surface with craters sand cracks.

  • PDF