• Title/Summary/Keyword: Spray volume

Search Result 331, Processing Time 0.024 seconds

The Spray Characteristics of Simplex Atomizer under Various Shroud Air Conditions with Swirl Flow (쉬라우드 공기의 선회 유동 특성 변화에 따른 심플렉스 연료 노즐의 분무 특성)

  • Lee, D.H.;Lee, K.Y.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.35-41
    • /
    • 2004
  • The spray characteristics were investigated to study the effect of shroud air with swirl flow on simplex type fuel injector for gas turbine combustor. The spray tests using PDA(Phase Doppler Anemometry) technique were conducted to compare the performance of simplex atomizer with $0^{\circ},\;40^{\circ},\;50^{\circ}$ swirled-shroud air conditions. In this study. we found that the injector with strong swirled-shroud air has the better atomization Performance compared with weaker swirled and non-swirled conditions.

  • PDF

The Study of the Interaction between Dual Spray by Two Swirl Injectors (이중 선회 분무간의 상호작용에 관한 연구)

  • Park, B.S.;Lee, D.J.;Kim, H.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.141-148
    • /
    • 2002
  • Experimental investigation of the interaction between dual spray formed by swirl type injector was conducted. Experimental parameter was fuel temperature, varied in the range from $-20^{\circ}C$ to $120^{\circ}C$. Measuring parameter were vertical distance from injector tip to patternator and gap between injectors. Volumetric distiribution and SMD were measured for the various combination of parameters. The results of present study show that the arithmetic sum of each of spray is not equal to dual spray, but it is equal above specific fuel temperature. As the increases of fuel temperature, SMD decreases and becomes more uniform. As the increases of gap between injectors, fuel volume and SMD at collision area increases, but penetrated fuel decreases.

  • PDF

A Study on Development Process of Evaporating Diesel Spray (증발디젤분무의 발달 과정에 관한 연구)

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik;Ha, Jong-Yul;Kim, Si-Pom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.141-146
    • /
    • 2007
  • In this study, the effects of change in ambient gas viscosity on spray structure have been investigated in the high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Emissions of diesel engines can be reduced by the control of the mixture formation process. Therefore, this study examines the evaporating spray structure in the constant volume chamber. The viscosity of ambient gas was selected as the experimental parameter, is changed from 21.7 mPa s to 32.1 mPa s by changing in ambient gas temperature. In order to obtain images of the liquid and vapor-phase of injected spray, exciplex fluorescence method was used in this study. The liquid and vapor-phase images were taken with 35mm still camera and CCD camera, respectively. Consequentially, it could be confirmed that the distribution of vapor concentration is more uniform in the case of the ambient gas with high viscosity than in that of the ambient gas with low viscosity.

Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism (미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

A Study on Injector Durability Test with Diesel and BD20 Using Common Rail (커먼레일을 이용한 디젤과 BD20 연료가 인젝터에 미치는 영향에 관한 연구)

  • JEONG, YUNHO;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.393-401
    • /
    • 2015
  • The characteristics of diesel and biodiesel are similar like as cetane number and auto-ignition temperature. High cetane number of diesel and BD could make possible to compression ignition. but BD showed different atomization from diesel due to component like density, viscosity and iodine value etc. Because of this, the biodiesel requires validation. This study using diesel and BD20 investigated effect to durability injector. Durability test were used common rail and bosch solenoid type 5-hole injector. Total test was 672hr but actual running time was 200hr. Spray experiments for spray characteristics were carried out using constant volume combustion chamber. Spray characteristics of diesel and BD showed different result up to durability test time. After 100hr, diesel showed spray shapes were stable but BD was not. After 200hr, difference of diesel and BD spray shapes were grow serious.

A Numerical Analysis on the Characteristics of Spray by Swirl Injector in Gas Turbine Combustor (가스터빈연소기에서 스월 인젝터의 분무특성에 관한 연구)

  • 이성혁;유홍선;이인섭;홍성국
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.30-39
    • /
    • 2000
  • The present paper deals with the numerical simulation for the spray characteristics with swirling turbulent flows and dilution flows from swirl injectors in a simplified can type of gas turbine combustor. The main objective is to investigate the characteristics of swirling turbulent flows with dilution flows and to provide the qualitative results for the spray characteristics such as the droplet distribution and Sauter Mean Diameter(SMD). The gas-phase equations based on Eulerian approach were discretized by Finite Volume Method, together with SIMPLE algorithm and the Reynolds -Stress-Model. The liquid-phase equations based on Lagrangian method were used to predict the droplet behavior. The results of preliminary test are generally in good agreement with experimental data, and show that the anisotropy exists in the primary zone due to swirl velocity and injected air from primary injector, and then gradually decays due to turbulent mixing and consequently near-isotropy occurs in the region between primary and dilution zones. For the spray characteristics, it is indicated that the swirling flows of primary jet region increase the droplet atomization. In addition, it is showed that the swirling flows at the inlet region lead the air-fuel mixture to be distributed near the igniter and can significantly affect the spray behavior in the primary jet region.

  • PDF

The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine (대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구)

  • Yoon, Wook-Hyeon;Kim, Byung-Seok;Kim, Dong-Hun;Kim, Ki-Doo;Ha, Ji-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-65
    • /
    • 2004
  • Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

A Study on the Strength Properties of Glass Fiber Reinforced Cement made by Premixing Method (선배합방법에 의한 섬유보강 시멘트의 강도 특성에 관한 연구)

  • 김용부;조정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.5-10
    • /
    • 1990
  • There are two main methods in reinforcing cements with glass fibers : spray-suction and premixing method. But GRC have been mostly studied by spray technique. In order to develop GRC made by premixing method, in this paper, the influence of glass fiber length, volume content and curing conditions upon the compressive, direct tensile and bending strengths of composites fabricated by a premixing method, were investigated. According to the test results, although it was difficult to obtain perfectly uniform distribution of fibers in GRC Pannel, it was found that tensile strength of cements with glass fiber was improved 2~5 times and flexural strength 4 times compared to conventional cement mortar upto fiber length 35 mm, volume content 4%.

  • PDF

A Study on Sprny and Combustion Characteristics by Temperature of Biodiesel Fuel (바이오디젤 연료온도에 따른 분무 및 열소특성에 관한 연구)

  • Baik, Doo-Sung;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.152-157
    • /
    • 2008
  • The biodiesel becomes one of the favorite alternative fuel applied to diesel engines. This research aims to understand the physics of spray and combustion characteristics of a biodiesel fuel in a constant volume chamber. For spray visualization, biodiesel was injected into a combustion chamber and a high speed camera was applied at various combustion conditions. To investigate heat-release rates and flame propagations, spark was ignited on a hydrogen fuel for the premixed combustion and then biodiesel was injected directly. In addition, parametric study was made by various geometries of combustion chambers and temperatures of fuels and injection pressures. This technology may contribute to improve the performance of bio-diesel engine and reduce emissions in future.

Performance Estimation of Small Regenerative Radiant Tube Burner System using High Velocity Discharge (고속분사를 이용한 소형 축열식 복사관 버너시스템의 성능평가)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.242-247
    • /
    • 2004
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swirl flow (DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic (TSPD) as TEM were carried out. The NOx, $CO_2$, $O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF