• 제목/요약/키워드: Spray angle

검색결과 559건 처리시간 0.027초

점탄성 유체에 따른 충돌분무의 분무패턴 및 미립화 특성 (Spray Patterns and Atomization Characteristics of Viscoelastic Fluid with Impinging Jet)

  • 이문희;홍정구
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.145-151
    • /
    • 2019
  • Viscoelastic fluid is used in various industrial sites because its cost reduction and environmental benefits by preventing formation of fine droplets that scattered around. However, viscoelastic fluids, unlike newtonian fluids, contain a shear thinning characteristic that decrease in viscosity as shear rate increases and elastic characteristic, making it difficult to predict spray breakup process. In this study we made three test fluids. Boger fluid with viscoelastic characteristics, and two newtonian fluids, were prepared to exclude shear thinning characteristics and study the effects of elastic characteristic only. Flow visualization, spray angle, and SMD were measured for three test fluids using laboratory scale impinging jet test apparatus. As a result, it was confirmed that Boger fluid, unlike the newtonian fluid, was not formed fine droplets that scattered around and the breakup process appeared differently. In addition, SMD was found to be large in Boger fluid, and the SMD according to pressure was confirmed that there is no significant difference.

인젝터 압력이 단공노즐 감압비등 분무에 미치는 영향 (Effect of Injection Pressure on the Flash Boiling Spray from Simple Orifice Nozzle)

  • 이현창;차현우;강동현
    • 한국분무공학회지
    • /
    • 제27권1호
    • /
    • pp.42-49
    • /
    • 2022
  • Flash boiling occurs in a couple of modern engineering systems and understanding its mechanism is important. In this experimental study, discharge coefficient of flash boiling spray from simple orifice nozzle was measured, and backlight imaging was acquired at injection pressure to 6.0 bar and temperature to 163℃ for the purpose. Pressurized water by pump was used for working fluid and was heated by electric heater and ejected through simple orifice nozzle diameter of 0.5 mm. High speed camera with long distance microscope was used for backlight imaging in two FoV having magnification of 3.3 and 0.64. The decrease of discharge coefficient according to degree of superheating and evolution of flash boiling spray imaged at various pressure and temperature were explained by the pressure field inside the injector.

스프레이 코팅 증착 방식을 이용한 계층적 미세 구조의 발수표면 제작 및 특성 분석에 대한 연구 (Study on the Fabrication and Characterization of Hydrophobic Surface with Hierarchical Microstructure using Spray Coating Deposition Method)

  • 최종윤;김기웅
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.15-22
    • /
    • 2023
  • This research introduces an innovative approach for fabricating microstructure surfaces using spray-coating deposition. The resulting surface, referred to as Magnetically Responsive Microstructures (MRM), exhibits hierarchically structured micro-pillar arrays with remarkably high aspect ratios. The fabrication process involves precisely mixing PDMS and hexane with Carbonyl iron powders, followed by ultrasonication and spray-coating on the top of a PDMS substrate placed on the neodymium magnet. The MRM surface shows hydrophobic properties, characterized by a contact angle surpassing 150° and an aspect ratio exceeding 10. Through a comprehensive exploration of critical parameters, including spray amount, magnet-substrate distance, and solution ratio enhanced dynamic tunability and exceptional hydrophobic characteristics are attained. This novel approach holds significant potential for diverse applications in the realm of dynamically tunable microstructures and magnetically responsive surfaces.

벽에 충돌하는 디젤분무의 특성에 대한 수치적 연구 (Numerical study for the characteristics of diesel spray impinging on a wall)

  • 양희천;정동화;유홍선
    • 대한기계학회논문집B
    • /
    • 제22권5호
    • /
    • pp.661-671
    • /
    • 1998
  • It is unavoidable that the fuel spray impinges on the wall of piston cavity in a compact high-pressure D.I. diesel engine. Therefore the characteristics of impinging spray are the very significant information on the consideration and the simulation of its combustion processes including the formation mechanism of exhaust emission and the design of the combustion chamber. In this paper, the numerical simulation was performed to study the characteristics of impinging spray. The spray-wall impingement model used is Watkins and Park's model. Calculation parameters are the inclination angles and the ambient pressures. As the inclination angle increases, the impinging spray develops mainly to the direction of the downstream and scarcely flows to that of the upstream. The shape on the wall of the impinging spray is the circle in the case of the normal impingement, while it is the ellipse in that of the oblique impingement. As the ambient pressure increases, the growth of impinging spray on the wall in the radial direction decreases owing to the increase in the resistance of the ambient.

Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구 (A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel)

  • 양지웅;정재훈;임옥택
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.

자동차 헤드램프 세척용 재순환 챔버 노즐의 내부유동이 분무장에 미치는 영향 (Effect of Internal Flow inside Recirculation Chamber Nozzle for Automative Head Lamp on Cleaning Spray)

  • 신정환;이인철;강영수;김종현;구자삼;구자예
    • 한국분무공학회지
    • /
    • 제16권2호
    • /
    • pp.90-96
    • /
    • 2011
  • Atomized liquid jets from the washing nozzle which configured with recirculation chamber for cleaning hot-zone area are accelerated and impinged on the head lamp surface. Cleaning efficiency of head lamp can be increased with injecting washing fluids into the hot-zone area. Experimental and numerical studies with various design parameters were executed to reveal the relations between internal geometry and internal flow in the washing nozzle. Spray structures were fitted with each of the head lamp surfaces and spray nozzles were optimized to the spray pattern. The recirculation chamber induces a recirculation flow and can be decreased the pressures perturbation inside the chamber. Orifice determines the mass flow rate. When the diameter of orifice is excessively large, it showed an unstable spray pattern. As a nozzle exit angle increases, density distributions are separated with two section. Also, as a protrusion length of nozzle exit increases, spray patterns are spread into a large area and density distributions showed unstable trend.

보조 공기 압력 변화에 따른 인젝터의 분무 특성에 관한 연구 (A Study of Spray Characteristics of Injector on the Air-assisted Pressure Variation)

  • 윤수한
    • 한국분무공학회지
    • /
    • 제3권4호
    • /
    • pp.58-64
    • /
    • 1998
  • In the gasoline engine of fuel injection type, atomization of fuel droplet and its distribution has directly influenced the performance of engine and harmful emission. To investigate atomization characteristics of fuel spray, in this paper fuel spray of air-assisted injector is observed at the various initial conditions of ambient air temperature and air assisted pressure. Behavior of fuel spray is photographed with microscopic visualization system. The SMD of fuel droplet is measured with PMAS (Particle Motion Analysis System). The effect of air-assisted pressure and temperature of ambient air resulted in the decrement of SMD and its variation. Finally, It was found that It was found that from spray angle at the two-hole injector had measured $20{\pm}4$ degree the result of photographs by shadow graphy. The mean diameter of suns decreased and the of droplets increased with increasing the temperature in the spray fields by the results of PMAS measurement. It was found that the characteristics of sprays became finer by increasing the temperature of spray fields about 373K without the delivery of air-assistance.

  • PDF

분사압력 및 분사각에 따른 비충돌형 인젝터의 분무특성 (Spray Characteristics of Nonimpinging-type Injector According to the Injection Pressure Variation and Angular Direction of Orifices)

  • 정훈;김종현;김정수
    • 한국추진공학회지
    • /
    • 제16권3호
    • /
    • pp.1-8
    • /
    • 2012
  • 70 N급 액체로켓엔진에 장착되는 비충돌형 인젝터의 수류시험을 수행하였다. 추진제 분사각이 커짐에 따라 인젝터 분무의 분열 양상이 평활류(smooth jet)에서 파상류(wavy jet) 형태로 천이하고, 분무의 분열길이는 분사압력에 반비례한다. 고속카메라로 획득한 순간분무이미지(instantaneous spray image) 분석을 통하여 액주 표면에 나타나는 파상(ruffle)이 확인되었으며, 특정 분사압력 구간(0.93 MPa)에서 분무의 주기적 흘림현상이 증폭되는 이상현상이 발견되었다.

3차원 마이크로 구조를 위한 포토레지스트 스프레이 코팅 (Photoresist spray coating for three-dimensional micro structure)

  • 김도욱;은덕수;배영호;유인식;석창길;정종현;조찬섭;이종현
    • 센서학회지
    • /
    • 제15권3호
    • /
    • pp.153-157
    • /
    • 2006
  • This paper presents the method for three-dimensional micro structure with photoresist spray coating system. The system consists of a high temperature rotational chuck, ultrasonic spray nozzle module, angle control module and nozzle moving module. Spray coating system is effected by several parameters such as the solid contents, the dispensed volume, the scanning speed of the spray nozzle and the wafer of dimension. The photoresist (AZ 1512) has been coated on the three-dimensional micro structure by spray coating system and the characteristics have been evaluated.

커먼레일 고압분사용 인젝터의 분공수 및 니들구동특성이 Pilot 분무에 미치는 영향 (Effect of Injection Hole and Needle-driven Characteristics on Pilot Spray in High Pressure Injector with Common-rail System)

  • 이진욱;배장웅;김하늘;강건용;민경덕
    • 한국분무공학회지
    • /
    • 제9권1호
    • /
    • pp.8-14
    • /
    • 2004
  • future exhaust emission limits for diesel-driven passenger cars will force the automotive company to significantly develop of the new technologies of diesel engine respectively of the drive assemblies. As we know, the contributions of soot and nitrogen oxide is the main problems in diesel engine. Recently, as a result, the pilot injection of common-rail fuel injection system recognizes an alternative function to solve an environmental problem. This study describes the effect of the nozzle structure and driven characteristic of injector on pilot injection fur a passenger car common-rail system. The pilot spray structure such as spray tip penetration, spray speed and spray angle were obtained by high speed images, which is measured by the Mie scattering method with optical system fur high-speed temporal photography. Also the CFD analysis was carried out for fuel behavior under high pressure in between needle and nozzle of injector for common-rail system to know the condition of initial injection at experiment test. It was found that solenoid-driven injector with 5-hole was faster than 6-hole injector in spray speed at same conditions and piezo-driven injector showed faster response than solenoid injector.

  • PDF