• Title/Summary/Keyword: Spray Volume

Search Result 331, Processing Time 0.025 seconds

SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG

  • Lee, S.W.;Y. Daisho
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.239-245
    • /
    • 2004
  • It has been recognized that alternative fuels such as Liquid Petroleum Gas (LPG) show less polluting combustion characteristics than diesel fuel. Furthermore, engine performance is expected to be nearly equal to that of the diesel engine if direct-injection stratified-charge combustion of the LPG can be adopted in the spark-ignition engine. However, spray characteristics of LPG are quite different from those of diesel fuel. understanding the spray characteristics of LPG and evaporating processes are very important for developing efficient and low emission LPG engines optimized in fuel injection control and combustion processes. In this study, the LPG spray characteristics and evaporating processes were investigated using the Schlieren and Mie scattering optical system and single-hole injectors in a constant volume chamber. The results show that the mixture moves along the impingement wall that reproduced the piston bowl and reaches in ignition spark plug. LPG spray receives more influence of ambient pressure and temperature significantly than that of n-dodecane spray.

Design Factors of Boom Sprayer(I) - Spray Patterns of Nozzles - (붐방제기 살포장치의 설계요인 구명을 위한 실험적 연구(I) -노즐의 분무유형-)

  • 정창주;김학진;조성인;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.217-225
    • /
    • 1995
  • This study was conducted to find design factors of spraying device of the boom sprayer for low volume application. Four types of nozzles(standard flat nozzle, drift guard nozzle, even flat nozzle, and hollow cone nozzle) were used for the spray characteristic experiment. Spray patterns of the nozzles were distinguished by the nozzle type, spray distance, and spray direction. The flow rate was proportional to the square root of spray pressure in all nozzles. Increased nozzle height improved spray distribution at reduced pressures and/or increased spacing. Distribution tended to improve as pressure increased within the range of pressures used for fan nozzles.

  • PDF

A Study on Spray Characteristics Analysis of Free Spray of Diesel Fuel with Ultra High Pressure (극초고압영역에서의 디젤연료의 자유분무특성에 관한 연구)

  • Jeong, D.Y.;Lee, J.T.;Hong, G.B.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.16-22
    • /
    • 2002
  • The characteristics of free spray with ultra injection pressure was analyzed to clear the limit pressure of diesel engine. To obtain final goal, ultra high pressure injection equipment was developed, spray patterns were visualized under various ultra injection pressures. Spray penetration and spray width, volume and entrained air mass were increased with the increase of injection pressure. Sauter mean diameter and injection durstion wert decreased. But over 3,000bar of ultra injection pressure region the rates of increase show almost similar and finally the reversed tendencies at 4,140bar.

  • PDF

Effect of Backhole on Spray Characteristics of Swirl Injectors in Liquid Propellants Rocket Engine (액체 추진제용 로켓 엔진 스월 인젝터의 백홀로 인한 분무 특성 연구)

  • 황성하;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-35
    • /
    • 2003
  • "Backhole" is a new geometric parameter and is defined as an extra empty volume which is located behind the tangential entries at the rear part of the vortex chamber in the swirl injector. Backhole makes a difference to the spray characteristics of swirl injectors such as the spray angle, SMD, the mixing characteristics and so on. To find its characteristics, experiments are conducted by using a stroboscopic photography, a PDPA apparatus and a mechanical patternator. With the backhole, the mass flow rate of the swirl injector is increased and the center region of the injected flow has more large volume than that of without the backhole. Also the cone angle can be controlled by the backhole, so that the mixing efficiencies of swirl injectors are changed. Based on cold-flow tests, the swirl injector with the backhole may improve its performance.rformance.

The Effects of Chamber Temperature and Pressure on a GDI Spray Characteristics in a Constant Volume Chamber

  • Oh, Seun-Sung;Kim, Seong-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.186-192
    • /
    • 2014
  • The spray structures under the stratified and homogeneous charge condition of a gasoline direct injection were investigated in a visualized constant volume chamber. The chamber pressure was controlled from 0.1 MPa to 0.9 MPa by the high pressure nitrogen and the chamber temperatures of $25^{\circ}C$, $60^{\circ}C$ and $80^{\circ}C$ were controlled by the band type heater. The fuel, iso-octane was injected by a 6-hole injector with the pressures of 7 MPa and 12 MPa. From the experiments results, it is confirmed that at lower chamber pressure, the penetration length and spray angle are mainly affected by the chamber temperature with the vaporization of the fuel droplets and generated vortices at the end region of the spray. And at higher chamber pressure, the penetration lengths at the end of the injection were about 50~60% of that at lower chamber pressure regardless of the chamber temperature and the effect of fuel injection pressure is larger than that of the chamber temperature which results from larger penetration lengths at higher fuel injection pressure than at lower fuel injection pressure regardless of the chamber temperatures.

Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels (디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구)

  • Park, Sewon;Park, Su Han;Park, Sungwook;Chon, Mun Soo;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.

Numerical Simulation of Swirl Effect on the Flow Fields and Spray Characteristics in Direct Injection Engine (적접분사 엔진의 유동장 및 분무특성에 미치는 선회비의 영향에 대한 수치해석적 연구)

  • Hong, K.B.;Kim, H.S.;Yang, H.C.;Ryou, H.S.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.120-129
    • /
    • 1995
  • Since the rate and completeness of combustion in direct injection engines were controlled by the characteristics of gas flow fields and sprays, an understanding of those was essential to the design of the direct injection engines. In this study the numerical simulations of swirl effects on the characteristics of gas flow fields and sprays were performed using the spray model that could predict the interactions between gas fields and spray droplets. The governing equations were discretized by the finite volume method and the modified k- e model which included the compressibility effects due to the compression/expansion of piston was used. The results of numerical calculation of the spray characteristics in the quiescent environment were compared with the experimental data. There were good agreements between the results of calculation and the experimental data, except in the early stages of spray. In the motoring condition, the results showed that a substantial air entrainment into the spray volume was emerged and hence the squish motion was relatively unimportant during fuel injection periods. As the swirl ratio increased, the evaporation rate was increased due to the wide dispersion of the spray droplets and the strong interaction between spray droplets and gas fields.

  • PDF

Wear Behavior of Al-based Composites according to Reinforcements Volume Fraction (강화상의 분율에 따른 알루미늄기 복합재료의 마모거동)

  • Lee, K.J.;Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.77-82
    • /
    • 2011
  • SiC particulate reinforced Al matrix composites with different SiC volume fractions were fabricated by thermal spray process. And the dry sliding wear test were performed on these composites using the applied load of 10 N, rotational speed of 30 rpm, radius of rotation 15 mm. Wear tracks on the Al/SiC composites were investigated using scanning electron microscope(SEM) and energy dispersive spectroscopy (EDS). It was observed that wear behavior of Al/SiC composites and formation of MML was changed dramatically according to reinforcement volume fraction.

A Experimental/Numerical Study of Behaviors of Spray Impinging on the Diesel Combustion Chamber Wall (디젤 연소실 벽면에 충돌하는 분무거동에 관한 실험적/수치적 연구)

  • 박정규;원석규;원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.86-95
    • /
    • 2000
  • A modified spray impingement model has been developed, which is assessed against experiments for the impinging sprays on the small combustion chamber at various gas pressures. To investigate spray behaviors in the diesel combustion chamber, a transparent constant-volume chamber is made which is similar to the combustion chamber of the real diesel engine. The chamber is pressurized by N2 gas from 0 bar to 20 bar to find the effects of ambient pressures. The behaviors of spray injected into this chamber and dispersed after impingement on the cylinder wall is measured two-dimensionally using laser sheet Mie scattering method. The physical submodels have been properly modified to improve the prediction capability of original KIVA code to describe the spray behaviors after impingement on the curved cylinder wall. In terms of spray dynamics and evolution. numerical results give qualitatively good agreements with experimental data.

  • PDF

SPRAY CHARACTERISTICS OF DME IN CONDITIONS OF COMMON RAIL INJECTION SYSTEM(II)

  • Hwang, J.S.;Ha, J.S.;No, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.119-124
    • /
    • 2003
  • Dimethyl Ether (DME) is an excellent alternative fuel that provides lower particulate matter (PM) than diesel fuel under the same engine operating conditions. Spray characteristical of DME in common rail injection system were investigated within a constant volume chamber by using the particle motion analysis system. The injector used in this study has a single hole with the different orifice diameter of 0.2, 0.3 and 0.4 mm. The injection pressure was fixed at 35MPa and the ambient pressure was varied from 0.6 to 1.5 MPa. Spray characteristics such as spray angle, spray tip penetration and SMD (Sauter mean diameter) were measured. Spray angle was measured at 30d$_{0}$, downstream of the nozzle tip. The measured spray angie increased with increase in the ambient pressure. Increase of the ambient pressure results in a decrease of spray penetration. The experimental result, of spray penetration were compared with the predicted one by theoretical and empirical models. Increase in the ambient pressure and nozzle diameter results in an increase of SMD at a distance 30, 45 and 60d$_{0}$, downstream of the nozzle, respectively.ely.