• 제목/요약/키워드: Spray Volume

검색결과 334건 처리시간 0.02초

횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향 (Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow)

  • 조우진;이인철;이봉수;구자예
    • 한국추진공학회지
    • /
    • 제12권1호
    • /
    • pp.16-22
    • /
    • 2008
  • 액체제트의 액적분열 분포특성을 알아보기 위해 아음속 유동 내로 수직 분사된 이유체 분무를 실험적으로 연구하였다. 노즐은 L/d=3의 외부혼합형을 사용하였으며 공기와 액체의 비를 $0\;{\sim}\;59.4%$까지 변화시키면서 분사하였다. 분무형상을 이미지화 하여 분무의 궤적과 분열특성을 관찰하였다. PDPA를 사용하여 액체제트 분열의 단면분포 특성을 측정하였으며 SMD, 액적속도, 그리고 체적유속을 측정하였다 이유체 분무로부터 공급되는 공기의 유량이 증가할수록 액체 제트의 충돌점은 노즐 입구와 좀 더 가까워졌으며, 침투거리는 증가하였고, 기체 액체 비를 증가시킴에 따라 좀 더 무화된 액체제트의 분포를 얻을 수 있었다.

가정용 보일러의 유화연료 공급장치 개발 및 분무 특성에 관한 연구 (A Study on the Development of Emulsified Fuel Supplier and Spray Characteristics of Domestic Petroleum Boiler)

  • 윤면근;김용국;류정인
    • 한국분무공학회지
    • /
    • 제3권4호
    • /
    • pp.8-15
    • /
    • 1998
  • The spray characteristics of emulsified fuel of W/O type has been experimentally investigated. The mixture of light oil and water by using ultrasonic energy adding system is used as the emulsified fuel. The SMD of sprayed droplet of emulsified fuel is measured by using the particle size analyzer. Major parameters of the present experimental study are the volume fraction of water in emulsified fuel, $0\sim30%$ by 5%, injection pressure, $10kg_f/cm^2\sim18kg_f/cm^2$ by $2kg_f/cm^2$, and the measurement distance, $10\sim100mm$, between injection nozzle tip and analyzer beam. Compared with light oil, the SMD of emulsified fuel is larger gradually by increasing the volume fraction of water in emulsified fuel, heightening injection pressure and increasing the spray distance. Also, In considering the fact that the pattern of drop size distribution of emulsified fuel is alike that of light oil, the real time spray in coincidence with making emulsified fuel by adding ultrasonic energy can stabilize spray pattern without modificating the injection system used by now.

  • PDF

정상.과도 분사 조건에서의 에어슈라우드 인젝터 분무의 입경.분사량 분포에 관한 연구 (A study on distribution of drop size and injection rate of air-shroud injector sprays under steady and transient injection condition)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.17-23
    • /
    • 2004
  • Spray characteristics of a twin-hole air shrouded nonle designed for gasoline injectors was investigated by using laser diffraction particle analyzer (LDPA) and tomography reconstruction- A confined spray chamber which is optically accessible through a pair of glass windows was made to simulate the fuel injection condition in intake manifold of gasoline engine. The measurement was applied to the twin hole injector with and without an air shroud. It demonstrates that for the case with an air shroud, fine atomization is achieved and there exists a large number of fine droplets between the region of the main spray streams, which conforms with the spray visualization. The drop size distribution was investigated as a function of elapse time after fuel injection. The distribution was greatly affected by the measurement position from the injector exit. Also, the spatially resolved spray volume fraction and Sauter Mean Diameter (SMD) from line-of-sight data of the LDPA are tomographically reconstructed by Convolution Fourier transformation under the steady injection condition.

  • PDF

디젤기관용 와류분사 밸브의 분무특성에 관한 연구 (1) (대기압하의 분사) (A Study on the Characteristics of Spray of Swirl Nozzle for Desel Engine Injector(I))

  • 안수길;노철승;박상길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.88-97
    • /
    • 1984
  • The combustion process and the performance of a diesel engine are considerably affected by the characteristics of fuel spray. It is known that the spray of swirl nozzle for diesel engine injector of small orifice ratio becomes soft spray that has no core, therefore its penetration, one of the characteristics of spray becomes werse inspite of its good dispersion. In this paper, the spray characteristics of variously designed swirl nozzle for diesel injector were investigated by the photographic method. The nozzles, used in this experiment, vary in the diameter of swirl chambers and orifice ratio. From the results of the study, the sprays of this type nozzle of optimum swirl chamber and orifice ratio show that penetration decreased slightly but dispersion and spray volume increased remarcably, compared with unswirled single hole nozzle of the same size. It was suggested as a reason for the results, that the spray of this type swirl nozzle is similar to hard spray, therefore the core of the spray sustains good penetration considerably.

  • PDF

직분식 가솔린 분무의 내부구조에 미치는 분위기 압력의 영향 (Effect of Ambient Pressure on Internal Structure of a DI Gasoline Spray)

  • 성기진;최동석;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.19-26
    • /
    • 2002
  • The objective of this study is to examine a DI(Direct Injection) gasoline spray development process under different ambient pressures using PIV(Particle Image Velocimetry). fuel spray experiments were performed within a constant volume chamber. The spray structure, velocity maps, velocity and vorticity contours were obtained to investigate its spray characteristics. It was found that higher ambient pressure has a significant effect on radial growth of the spray. The position which has a maximum velocity moved from the spray edge to the spray center as ambient pressure was increased. Higher ambient pressure moved a maximum vorticity position upward of the spray.

화상상관법을 이용한 증발 디젤분무의 구조해석 (Analysis on the Structure of Evaporative Diesel Spray by Using PIV Technique)

  • 염정국;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.74-79
    • /
    • 2004
  • The effects of change in injection pressure on spray structure have been investigated in high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Also emissions of diesel engines can be controlled by the analyzed results. Therefore, this study examines the evaporating spray structure by using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 72 MPa to 112 MPa with a high pressure injection system(ECD-U2). The PIV(Particle Image Velocimetry) technique was used to capture flow variation of the evaporative diesel spray. A study on the mixture formation process of diesel spray was executed by the results of flow analysis in this study. Consequentially the large-scale vortex flow could be found in downstream spray and the formed vortex governs the mixture formation process in diesel spray.

직접분사엔진의 분사압력 변화에 따른 유동장 및 분무특성에 대한 수치해석적 연구 (Numerical Simulations of the Injection Pressure Effect on the Flow Fields and the Spray Characteristics in Direct Injection Engine)

  • 양희천;정연태;유홍선
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2339-2358
    • /
    • 1993
  • Since the rate and completeness of combustion in direct injection engines were controlled by the characteristics of gas flow fields and sprays, an understanding of those was essential to the design of the direct injection engines. In this study the numerical simulations of injection pressure effects on the characteristics of gas flow fields and sprays were preformed using the spray model that could predict the interactions between gas fields and spray droplets. The governing equations were discretized by the finite volume method and the modified k-.epsilon. model which included the compressibility effects due to the compression/expansion of piston was used. The results of the numerical calculation of the spray characteristics in the quiescent environment were compared with the experimental data. There were good agreements between the results of calculation and the experimental data, except in the early stages of the spray. In the motoring condition, the results showed that a substantial air entrainment into the spray volume was emerged and hence the squish motion was relatively unimportant during the fuel injection periods. It was found that as the injection pressure increased, the evaporation rate of droplets was decreased due to the narrow width of spray and the increased number of droplets impinged on the bottom of the piston bowl.

전자유압식 분사계에 의한 초고압 디젤분무의 거동에 관한 연구 (Behaviour of Ultra-High Pressure Diesel Spray on Electronic Hydraulic FuelInjection System)

  • 장세호;김준효;안수길
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.137-146
    • /
    • 1996
  • Behaviour of ultra-high pressure diesel spray and its structure in a constant-volume pressure chamber were studied with injection pressure ranging from 35 to 110MPa. Sprays were observed by using the back illumination scattering method and righ angle scattering method. The spray process mechanism were investigated with both photographs. As a result, the spray angle and air entrainment angle was larger as injection pressure and back pressure increase. It becomes clear that mean air-fuel ratio is increased by increasing the injection pressure.

  • PDF

다각주사법에 대한 비대칭 분무 구조의 토모그래피 재구성 (Tomographic Reconstruction of Asymmertic Liquid Spray from Multi-angular Scanning)

  • 이충훈;정석호
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.177-186
    • /
    • 1996
  • A convolution alogorithm combined with Fourier transformation is applied to the tomographic reconstruction of the asymmetric spray structure to identify the local drop size and volume concentration. The line of sight intergrated data from Malvern particle analyzer with multiangular scanning form a basic information for the deconvolution. Linear interpolation is tested to obtain the effect of increasing number of scanning angles. This transformation method predicts well the structure of asymmetric spray. The tehnique can be extended to other line of sight combustion diagnostics.

  • PDF

아음속 횡단류에 수직 분사되는 분무의 액적크기 및 속도 분포 특성 (Droplet Sizes and Velocities from Single-Hole Nozzle in Transversing Subsonic Air-stream)

  • 이인철;조우진;이봉수;김종현;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.106-109
    • /
    • 2007
  • The spray plume characteristics of liquid water jet injected into subsonic cross-flow at 42 m/s were experimentally investigated. Nozzle has a 1.0 m diameter and L/D=5. Droplet sizes, velocities, volume flux were measured at each downstream area of the injector exit using phase Doppler particle anemometry. Measuring probe position is moved with 3-way transversing machine. Experimental results indicate that SMD is varied from 75 to $120{\mu}m$ distribution and it is uncertain layer structure. SMD peaks at the top of the spray plume. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/D : 40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume. Volume flux is a criterion to the droplet concentration. All volume flux distribution has a same structure that continuously decreases from the center region to the edge of the plume. Z/D : 20 is spatially less concentrated than in Z/D : 100.

  • PDF