• Title/Summary/Keyword: Spray Visualization

Search Result 270, Processing Time 0.021 seconds

Investigation on Injection Rate and Microscopic Spray Characteristics of Fine Bubble Diesel Fuel (미세버블 디젤 연료의 분사율과 미시적 분무특성에 대한 연구)

  • Chen, Hai-Lun;Lee, Seungwoo;Kim, Kihyun
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2020
  • This study aims to investigate injection rate and microscopic spray characteristics of diesel fuel containing fine air bubble (FBD). fine bubble was generated by cavitation theory using bubble generator. Fuel spray was injected into constant volume chamber and visualized by high speed camera. The injection rate data was acquired with bosch tube method. Injection rate of finebubble diesel was very similar with that of diesel. It showed slightly faster injection start by 5 ㎲ attributed to the low viscosity characteristics. In microscopic spray visualization, fine bubble diesel spray showed unsymmetric spray shape compared with diesel spray. It also showed very vigorous spray atomization performance during initial spray development. Improved atomization was also attributed to the low viscosity and surface tension of finebubble diesel fuel.

The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine (대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구)

  • Yoon, Wook-Hyeon;Kim, Byung-Seok;Kim, Dong-Hun;Kim, Ki-Doo;Ha, Ji-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-65
    • /
    • 2004
  • Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

Spray and Evaporation Characteristics of DME fuel at the High pressure and temperature (고온 고압하에서의 DME 연료 분무 및 증발 특성)

  • Kim, Hyung-Jun;Suh, Hyun-Gyu;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • The purpose of this study is to analyze spray and evaporation characteristics of DME fuel at the high pressure and temperature. For the numerical analysis of dimethyl ether(DME) fuel spray characteristics, hybrid breakup model was applied to the DME spray and its breakup process. In order to obtain experimental results for comparison with the predicted ones, the visualization of the spray evolution process was executed by using a Nd:YAG laser. Also, the numerical investigation was conducted by the two hybrid models for primary and secondary breakup of the DME spray. The primary breakup model was used the Kelvin-Helmholtz(KH) breakup model. In the secondary breakup process, Rayleigh-Taylor(RT) and Drop Deformation Breakup(DDB) model was applied. The results of this study provide the macroscopic characteristics of the spray such as spray tip penetration and cone angle, and prediction accuracy of the two hybrid model.

  • PDF

The Numerical Study on Prediction of Diesel Fuel Spray Evolution in a Different Types of Nozzle Geometry (노즐 형상에 따른 디젤 연료 분무의 발달 예측에 관한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.169-174
    • /
    • 2017
  • The objective of this study was to verify the experimental and numerical results of spray evolution injected from different types of the nozzle-hole geometries. Spray visualization was taken by high speed camera under the different conditions. For the simulations of spray tip penetration, turbulence, evaporation and break-up model were applied K-zeta-f, Dukowicz and Wave model, respectively. Also, the prediction accuracy of spray tip penetration was increased by varying the spray cone angle. At the same time, the results of this work were compared in terms of spray tip penetration, and SMD characteristics. The numerical results of spray evolution process and spray tip penetration showed good agreement with experimental one.

The Study on the Spray Characteristics of Supercritical Spray (초임계상태 분무의 분무 특성에 관한 연구)

  • Park, C.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.8-14
    • /
    • 1999
  • The characteristics of the breakup process in supercritical spray is investigated during the injection of supercritical sulfur hexafluoride into dissimilar gases at supercritical pressures and subcritical temperature of the injected fluid. The visualization techniques used are backlighting and shadowgraph methods. The spray angles are measured and the breakup and mixing process are observed at near and supercritical conditions. The results show that spray angles are decreased with the in..ease of the ratio of density $(\frac{\rho_f}{\rho_g})$. At the supercritical temperature, the spray angles in atomization region are kept nearly constant such as the typical spray angle in gas injection. The mixing process is changed radically at the temperature where $\frac{d\rho}{dT}=\frac{1}{2}[\frac{d\rho}{dT}]_{max}$ at given pressure.

  • PDF

A study on the structure of a diesel spray and the Improvement of the Injection System by the Exciplex Method (EXCIPLEX법에 의한 디젤분무의 구조와 분사계 개선에 관한 연구)

  • 김덕줄;차건종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2373-2385
    • /
    • 1995
  • The goals of this study are to apply exciplex method to the visualization of the fuel spray of a diesel engine and to investigate the liquid phase of fuel spray that injected at the various tips of a fuel injector. This study provides the informations for the improvement of the diesel injection system and the structures of diesel spry with the boiling of fuel droplets in combustion chamber by the exciplex method. Hexame was used as fuel for approximation to injection condition of the engine. And naphthalene and TMDP were added to the fuel for the visualization by exciplex method. Experimental injectors were 4hole, 8hole, and 1hole impinging injectors. In the injection condition of actual engine the exciplex was sufficient to catch the liquid phase signal. The spray penetration of impinging injector was small than that of actual 4 and 8hole injector but atomization was better. The upper bound of impinging injector was determined by the geometry of a cylinder head and the lower bound was determined by spray angle. On impinging injector the atomization was better at the edge of disk than at center of disk and also the mixing with environmental gas was better.

Fuel Spray Characteristics of the APU Gas Turbine Combustor under high speed air flow conditions (APU 가스터빈 연소기내의 고속공기유동에 따른 연료 분무특성 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Rhee, Dong-Ho;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.285-288
    • /
    • 2009
  • In order to understand spray characteristics with inflowing air from the compressor in the APU gas turbine combustor, we performed spray visualization test by using ND-Yag Laser sheet beam. The sector combustor which size is 1/6 of the real combustor was manufactured. Turbo blower is used as an air supplying device to simulate gas turbine air flow condition. In the case of 75 m/s combustor inlet air flow condition, spray angle way increased and dispersed widely than without airflow condition.

  • PDF

The Fabrication and Trial Performance of Injector Driver for CRDI (CRDI용 인젝터 드라이버 제작과 성능시험)

  • Kim, Sang-Am;Wang, Woo-Gyeong;Kim, On
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.38-45
    • /
    • 2013
  • In this study, for carrying out the spray and combustion experiment using a Common Rail Direct Injection(CRDI) system, the controller was fabricated to drive a high speed camera, a injector and a laser beam sequentially at a low cost. CB280 module of one-chip micro processer was used for the controller. In order to confirm responsibility and utility of the controller, the current drive performance, the spray behavior and the injection rate were tested and analyzed under various experimental conditions. As this research results, we found that the fabricated controller was able to control the devices for the spray experiment precisely with the input value in program and it had the dynamic load responsibility and repetition. Also, we found that the injection rates of our experimental results were higher than those of others at the same injection pressure and the controller connected with the laser system and the data acquisition system had validity for carrying out the spray visualization experiment.

PRESSURE MODULAION ON MICRO-MACHINED PORT FUEL INJECTOR PERFORMANCE

  • Kim, H.;Im, K.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • An experimental study was carried out to characterize the spray atomization process of micro-machined port fuel injectors with a piezoelectric atomization device, which can generate pressure pulsations through vibration of a piezoelectric transducer. In this study, several types of micro-machined arrays such as 30∼200-microns of hole arrays were tested. Both a dual-stream and a central-port injectors with micro-machined arrays were tested and compared with normal port fuel injectors. The spray visualization was conducted to characterize overall spray structure and phase Doppler particle analyzer (PDPA) system was used to quantify the droplet size and velocity. In addition, the pressure history was recorded by using digitized signal from pressure transducer. The results showed that modulation is effective to the spray atomization for tested injectors and atomization performance depends on injector design factors, orifice sizes, and frequency and power of the modulator. A number of resonance frequencies of the modulator was modified by injector parameters and temperature. In addition, our results suggested that design of sufficient space among holes is critical to avoid droplet coalescence in the multi-hole micro-machined injectors.

Effect of nozzle geometry on the injection characteristics and spray behavior (고압 분사 디잴 인잭터의 노즐 형상이 분사 특성 및 분무 거동에 미치는 영향)

  • Lee, C.S.;Park, S.W.;Chon, M.S.
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This paper describes the characteristics of injection rate and macroscopic behavior of fuel spray injected from common-rail type diesel injectors with different nozzle geometries. The injection rates according to the nozzle geometries were measured at different energizing duration of the injector solenoid and injection pressure by using the Bosch's injection rate meter based on the pressure variation in the tube. The spray behaviors injected from the different nozzles were visualized using the spray visualization system composed of an Ar-ion laser, an ICCD camera, and a synchronization system at various injection and ambient pressures. It is revealed that VCO nozzle has higher spray tip velocity at the early stage of injection duration and wider spray cone angle than the mini-sac nozzles. Also the spray cone angle is increased with the increase of nozzle diameter.

  • PDF