• 제목/요약/키워드: Spray Tip Penetration

검색결과 153건 처리시간 0.019초

직접분사식 가솔린 선회분사기 개발에 관한 연구 (Development of Gasoline Direct Swirl Injector)

  • 박용국;이충원
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.78-86
    • /
    • 2001
  • The Gasoline Direct Injection(GDI) system has been highlighted due to the improvement of fuel consumption and the control of exhaust emission from gasoline engines. The GDI system includes a high injection pressure, smaller mean diameter, good spray characteristics and stability. We were interested in the development for gasoline direct swirl injector(GDSI) in which the swirler is specially designed with an incident angle. Nymerical analysis was utilized to investigate the internal flow of GDSI with a goal to determine the swirl incident angle and needle lift. Accordingly, it describes characteristics of a GDSI in which the flowrate and spray characteristics are satisfied. especially the spray tip penetration decreases, compared with other type GDI, mean diameter of droplets is from 20${\mu}{\textrm}{m}$ to 25${\mu}{\textrm}{m}$ and spray angle ranges from 64$^{\circ}$to 66$^{\circ}$.

직접분사식 가솔린 선회 분사기에서의 내부 유동특성에 관한 수치 해석 (A numerical study on the characteristics of internal flows in a gasoline direct swirl injector)

  • 배수호;문수연;이충원
    • 한국분무공학회지
    • /
    • 제6권2호
    • /
    • pp.9-15
    • /
    • 2001
  • The internal flow characteristics of a gasoline direct injector have been studied to improve fuel economy and reduce exhaust emissions. Computational Fluid Dynamics (CFD) is used to examine the internal flow of the GDI with the purpose of designing the optimum geometry of the injector. This study tests orifice length, cone angle, swirl angle, orifice diameter and needle lift. The results show that optimum sizes of the orifice length, cone angle, swirl angle, orifice diameter and needle lift are 0.8mm, $140^{\circ},\;120^{\circ},\;80mm\;and\;70{\mu}m$, respectively. The size of the lift does not affect the formation of the air core signficantly near the tip of the needle compared to the ball-type needle. The vena contracta phenomenon near the orifice inlet can be released by smoothing the edge.

  • PDF

바이오디젤 연료의 혼합기 형성 및 미립화 증진 방안 (A Review on the Mixture Formation and Atomization Characteristics of Oxygenated Biodiesel Fuel)

  • 서현규
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.183-192
    • /
    • 2014
  • In this work, the mixture formation and atomization characteristics of biodiesel fuel were reviewed under various test conditions for the optimization of compression-ignition engine fueled with biodiesel. To achieve these, the effect of nozzle caviting flow, group-hole nozzle geometry and injection strategies on the injection rate, spray evolution and atomization characteristics of biodiesel were studied by using spray characteristics measuring system. At the same time, the fuel heating system was installed to obtain the effect of fuel temperature on the biodiesel fuel atomization. It was revealed that cavitation in the nozzle orifice promoted the atomization performance of biodiesel. The group-hole nozzle geometry and split injection strategies couldn't improve it, however, the different orifice angles which were diverged and converged angle of a group-hole nozzle enhanced the biodiesel atomization. It was also observed that the increase of fuel temperature induced the quick evaporation of biodiesel fuel droplet.

Development Behavior of Vaporizing Sprays from a High-Pressure Swirl Injector Using Exciplex Fluorescence Method

  • Choi, Dong-Seok;Kim, Duck-Jool;Hwang, Soon-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1143-1150
    • /
    • 2000
  • The effects of ambient conditions on vaporizing sprays from a high-pressure swirl injector were investigated by an exciplex fluorescence method. Dopants used were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to examine the behavior of liquid and vapor phases inside of vaporizing sprays, ambient temperatures and pressures similar to engine atmospheres were set. It was found that the ambient pressure had a significant effect on the axial growth of spray, while ambient temperature had a great influence on the radial growth. The spatial distribution of vapor phase at temperatures above 473K became wider than that of liquid phase after half of injection duration. From the analysis of the area ratio for each phase, the middle part (region II) in the divided region was the region which liquid and vapor phases intersect. For liquid phase, fluorescence-intensity ratio was greatly changed at lms after the start of injection. However, the ratio of vapor phase was nearly uniform in each divided region throughout the injection.

  • PDF

극저온의 흡기 온도 조건에서 실린더 내 디젤 연료의 분무 특성 (Spray Characteristics of Diesel Fuel in a Cylinder under Cryogenic Intake Air Temperature Conditions)

  • 민세훈;서현규
    • 한국분무공학회지
    • /
    • 제26권1호
    • /
    • pp.18-25
    • /
    • 2021
  • The objective of this study is to investigate the effect of cryogenic intake air temperature on the injected fuel droplet behavior in a compression ignition engine under the different start of energizing timing. To achieve this, the intake air temperatures were changed from -18℃ to 18℃ in steps of 9℃, and the result of fuel evaporation rate, Sauter mean diameter, and equivalence ratio distributions were compared. When the intake air temperature decreased in steps of 9℃, less fuel was evaporated by about 3.33% because the cylinder temperature was decreased. In addition, the evaporated fuel amount was increased with retarding the start of energizing timing because the cylinder temperature raised. However, the difference was decreased according to the retarded start of energizing timing because the cylinder pressure was also increased at the start of fuel injection. The equivalence ratio was reduced by 5.94% with decreasing the intake air temperature. In addition, the ignition delay was expected to longer because of the deteriorated evaporation performance and the reduced cylinder pressure by the low intake air temperature.

압축착화기관에서 DME-바이오디젤 혼합연료의 분무 및 배기 특성에 관한 연구 (Study on Spray and Exhaust Emission Characteristics of DME-Biodiesel Blended Fuel in Compression Ignition Engine)

  • 차준표;박수한;이창식;박성욱
    • 대한기계학회논문집B
    • /
    • 제35권1호
    • /
    • pp.67-73
    • /
    • 2011
  • 본 연구는 DME-바이오디젤 혼합연료의 분무 및 연소, 배기 특성을 바이오디젤과 비교한 실험적 연구이며 실험연료는 바이오디젤 (BD100)과 중량 기준으로 DME를 20% 혼합한 DME-바이오디젤 혼합연료 (B-DME20)이다. 거시적 분무 특성을 연구하기 위하여 분무 이미지로부터 분무도달거리, 분무각을 측정하였으며, 연소 및 배기 특성은 단기통 직접 분사식 압축착화 기관을 이용하여 분석하였다. 실험결과 바이오디젤과 DME-바이오디젤 혼합연료는 분사율에서는 큰 차이가 없었지만 혼합연료의 경우에 착화지연기간이 짧고 연소압력이 높았으며soot 배출물이 현저하게 줄어들었다.

디젤 및 바이오디젤 연료의 분무특성에 관한 연구 (An Experimental Study on Spray Characteristics of Diesel and Bio-diesel Fuel)

  • 김재덕;구리 아이눌;송규근;정재연;김형곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권1호
    • /
    • pp.53-59
    • /
    • 2011
  • 디젤기관은 세계적으로 연료의 경제성 때문에 사용이 증가할 것이다. 그러나 NOx, 매연 등과 같은 배기가스를 배출한다. 본 연구는 커먼레일 연료분사 시스템에서, 연료온도, 분사 압력, 분사시간, 연료 점성에 따른 분무 특성을 실험하였다. 커먼레일 시스템에서, 디젤 연료는 분사 압력, 분사 시간에 따라 분무 형상이 다르다. 필터 압력은 연료 유동과 관련이 있는 연료 점성을 변화시키는 연료 온도에 영향을 받는다. 분무와 무화특성에 미치는 바이오 디젤 연료의 혼합율의 영향에 대해 많은 실험 조건에서 실험하였다. 바이오디젤 연료의 미립화 특성은 바이오 디젤 혼합비율이 증가하면 높은 점성 때문에 악화되는 것을 알았다.

디젤 연료 온도에 따른 분무 발달 특성 (Characteristics of the Spray Development with Diesel Fuel Temperatures)

  • 이진우
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.270-275
    • /
    • 2016
  • 본 연구에서는 디젤 연료 온도에 따른 실제 분사되는 연료량, 분사율 그리고 거시적 분무 발달 과정에 대한 특성을 파악하고자 하였다. 시험 결과 동일한 분사 시작 신호 및 분사 기간 신호를 입력하였음에도 불구하고, 연료 온도가 낮아짐에 따라 실제 연료 분사량이 감소하는 경향을 보였다. 분사율 측정 결과를 통해 연료 온도가 낮은 조건에서 실제 분사 시작 시점이 지연되며, 실제 분사가 유지되는 기간이 짧아지는 것을 확인하였으며, 이를 통해 실제 분사되는 연료량 저감에 대한 근거를 찾을 수 있었다. 거시적 분무 이미지 촬영 결과를 연료 온도 별 분무 도달 거리로 표현하여 비교 하였으며, 낮은 연료 온도 조건에서 분무 미립화 성능 악화로 인해 분무 도달 거리가 길어지는 것을 확인하였다. 저온 조건에서의 연소 개선을 위해 향후 시도할 선행 평가로서 피스톤 타켓팅 평가를 수행하였으며, 이른 시기에 분사되는 파일럿 연료가 크레비스 영역으로 유입되는 것을 확인하였으며, 이를 통해 파일럿 분사 방식 적용 시 연료량 분배 및 분사 시기 선정이 매우 중요한 인자가 됨을 파악하였다.

RNG $k-\varepsilon$ 모델의 적용성에 대한 연구 (A Study of Applicability of a RNG $k-\varepsilon$ Model)

  • 양희천;유홍선;임종한
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.

Butane 및 propane의 비정상 난류 제트 특성에 관한 연구 (A study on Behavior of Turbulent Transient Jets with Butane and Propane)

  • 이범호;송학현;조승환;홍성태;이대엽;이태우
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.74-82
    • /
    • 2010
  • In order to understand the behavior of transient gaseous injection used in an LPG (Liquefied Petroleum Gas) engine, turbulent incompressible transient jets with butane and propane were measured and analyzed at pressures of 1.5 bar and 2.0 bar with injector diameters of 3 mm and 5 mm. Mie-scattering method with a tracer was used, and images were processed to investigate the behavior of butane and propane jets. Distances from the nozzle to transition region were measured as $L_e/d_{inj}$=4.35~19.4, where $L_e$ and $d_{inj}$ indicate respectively a distance from nozzle to transition point and nozzle diameter. Slits and tubes around jet at near-field were introduced to measure the effect of entrainment and the diameter of jet, which revealed that the entrainment of surrounding air is significant for developing jet diameter. When the entrainment is restricted, the behavior of jet became deviating from the baseline. It was found that the virtual origin located outside of a nozzle towards jet tip within the conditions of this work, and its location was estimated as $x_o/d_{inj}$=0.56~7.25, where $x_o$ is a distance from nozzle to virtual origin.