• 제목/요약/키워드: Spray System

검색결과 1,251건 처리시간 0.029초

바이오 디젤 연료의 고압 분무 특성 (Characteristics of High Pressure Bio-diesel Fuel Spray)

  • 홍창호;최욱;최병철;이기영
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.56-62
    • /
    • 2003
  • Spray characteristics of conventional diesel fuel and bio-diesel fuel(methyl-ester of soybean oil) were compared, in terms of spray tip penetration and spray angle, by using a commercial high pressure common rail injection system for light-duty DI Diesel engines. The experiments were carried out under the non-evaporating condition at ambient density(8.8, $15.6 kg/\textrm{m}^3$) and injection pressure(75, 135 MPa). The experimental method was based on a laser sheet scattering technique. Spray tip penetrations of bio-diesel fuel were longer, on the whole, than those of conventional diesel fuel, except for lower injection pressure(75 MPa) under lower ambient density$(8.8 kg/\textrm{m}^3)$. But spray near angle and spray far angle of bio-diesel fuel were smaller than those of conventional diesel fuel, implying spray angle is related to the growth rate of spray tip penetration. The experimental results of spray tip penetration agreed well with the calculated values by the Wakuri et al.'s correlation based on the momentum theory.

Experimental and Numerical Study on Effects of Wall Impingement on Spray and Combustion Characteristics in a Diesel Engine

  • Liu, Yu;Chung, S.S.;Ha, J.Y.
    • 한국분무공학회지
    • /
    • 제15권3호
    • /
    • pp.140-149
    • /
    • 2010
  • The spray-wall impingement in diesel engines is important to mixture preparation, engine performance and pollutant emissions. The purpose of this paper is to study the effects of spray-wall impingement on fuel distribution, combustion and emission characteristics by using both experimental and numerical methods. To investigate the spray-wall impingement process, an impingement-chamber was designed and a visualization experiment system was also developed. The images of impinged spray and free spray were digitally recorded with an intensified CCD camera. To investigate the fuel distribution, combustion and emission characteristics of impinged spray in a real diesel engine, the fuel injection and combustion processes of an engine with impingement-chamber were simulated by CFD software. Equivalence ratio distribution results were obtained to understand the fuel distribution characteristics of the impinged spray. Some combustion and emission characteristics were also acquired and the results showed that ignition delay of impinged spray was shorter than that of free spray; NO emission of the impinged spray was significantly less than that of free spray, but soot emission of impinged spray was more than that of the free spray. This study found that the diesel engine with spray-wall impingement has significant potential to reduce NO emission.

물을 냉매로 하는 구형 얼음입자 제조에 관한 실험적 연구 (Experimental study on the production of spherical ice particles using water as refrigerant)

  • 신흥태;김민형;이윤표;최영돈
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.475-482
    • /
    • 1998
  • In this paper, an experimental study was conducted to investigate the performance of the spherical ice particle production system which uses the technology of water spray in a vacuum chamber for increasing the heat transfer area. As a result, following conclusions were obtained. The diffusion-controlled evaporation model agreed relatively well with experiments. The spray flow rate influences the performance of the system rather than any other factors, for example, the spray nozzle position, the nozzle number. As the spray rate increases, the system efficiency increases. It is due to the entrainment of small droplets among the spray with the exhausted vapor. Thus the system should be designed and operated to prevent the entrainment. Assuming the compressor efficiency to be 70%, the COP of the system reaches highly up to 6 at a maximum spray rate. Under the conditions, however, the rigid ice layer is obtained because ice particles bond together with increase of the spray rate. Therefore, the spray rate should be controlled properly to make the spherical ice particles.

  • PDF

분위기압력에 따른 CRDI 분사계의 분무특성 연구 (A Study on the Spray Characteristics of CRDI System with Ambient Pressure)

  • 김상암;왕우경
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.21-28
    • /
    • 2014
  • The studies of the spray characteristics for a CRDI engine had been advancing by many researchers, because the performance and exhaust emission were significantly affected with the spray characteristics. But most experiments of the studies would be done at low ambient pressure conditions under 2MPa. In this study, injection rates were measured with Zeuch's method at various ambient pressures to 5MPa and a constant injection pressure of 130MPa. On the same conditions, non-evaporating spray images were taken with a high speed camera and analyzed carefully with Adobe Photoshop CS3. Macroscopic spray characteristics and breakup processes in the spray could be found from the examined and analyzed data. The initial injection rate, penetration, angle, velocity and breakup of the spray were practically affected with a variation of the ambient pressure, but the injection start time and injection period were scarcely affected. As the ambient pressure was higher, the breakup of a high density droplet region in the spray was happened slowly and the main position of breakup was shifted from a front of the spray to a upstream around a nozzle. The results and techniques of spray visualization and injection rate measurement in this study would be practically effective to study a high pressure diesel spray for a CRDI.

가솔린 직접분사식 고압 슬릿 노즐 분사기의 팬형 분무 특성 고찰 (Pan-shaped Spray Characteristics of GDI High Pressure Slit Nozzle Injector)

  • 송범근;김원태;강신재
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.70-76
    • /
    • 2005
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

BEHAVIOR OF LIQUID LPG SPRAY INJECTING FROM A SINGLE HOLE NOZZLE

  • PARK K.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.215-219
    • /
    • 2005
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. A liquid direct injection system into a cylinder was suggested as a next generation system to maximize a fuel economy as well as a power. This study addresses the analysis of the LPG spray injecting from single hole injector. Two different test conditions are given, which are a fully developed spray case with various injection pressures and a developing spray case with ambient pressure variation. The LPG spray photographs are compared with the sprays of gasoline and diesel fuel at the same conditions, and the spray angles and penetration lengths are also compared, and then the spray behavior is analyzed. The LPG spray photos show that the dispersion characteristic depends very sensitively on the ambient pressure soon after injection. The spray angle is very wide in a low ambient pressure condition until the saturated pressure, but the angle is quickly reduced at the condition over the pressure. However, the down stream of the LPG spray shows much wider dispersion and less penetration than those of gasoline and diesel sprays regardless ambient pressure condition.

커먼레일 분사시스템에서 바이오디젤 혼합유의 분무 거동에 관한 실험적 연구 (An Experimental Study of Spray Behaviors of Biodiesel blended fuels in a Common Rail Injection System)

  • 최승훈;오영택
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.14-18
    • /
    • 2005
  • In this study, the spray characteristics of blended fuels with biodiesel were investigated. The experiments were performed for the effect of mixing ratio and injection pressures on the spray behavior. Conventional diesel fuel and biodiesel fuel and blended fuels were used as test fuels. Through the spray visualization system, composed of a Halogen lamp and High speed camera. The process of spray injection was visualized. Fuel containing biodiesel has different spray pattern on account of the high viscosity and large surface tension. Through this experimental result, we found that, after solenoid driving pulse generates, the increase of injection pressure enables delay time to get shorter, but the increase of mixing ratio makes delay time lengthen.

  • PDF

커먼레일 디젤 인젝터에서 연료 분사 및 분위기 압력이 DME 분무 특성에 미치는 영향 (Effect of High Injection Pressure and Ambient Pressure on the DME Spray Characteristics Injected Through a Common-rail Diesel Injector)

  • 김형준;박수한;이창식
    • 한국분무공학회지
    • /
    • 제14권2호
    • /
    • pp.71-76
    • /
    • 2009
  • The aim of this investigation is to study the effect of the high injection pressure on the dimethyl ether (DME) spray characteristics injected through a common-rail diesel injector under various ambient pressures. In order to investigate the effect of the injection pressure and ambient condition, the common-rail injection system with two high pressure pumps and high pressure chamber pressurized up to 40 bar were used, respectively. Spray images of DME fuel obtained from a visualization system composed of high speed camera and two metal halide lamps as the light source. From the obtained images, the spray behaviors such as a spray development process, spray tip penetration, spray width, and spray cone angle were measured for analyzing the DME spray characteristics under various experimental conditions. It was found that the spray development slowed as the ambient pressure increased and spray tip penetration at injection pressure of 90 MPa is longer than that at 50 MPa. In addition, the spray width at the end stage of injection decreased under the atmospheric conditions due to the evaporation property of DME fuel, and DME spray shows narrow spray cone angle according to the injection pressure increased.

  • PDF

고압 분사 인젝터의 분사 시기에 따른 DME 분무특성에 관한 실험 및 해석적 연구 (Experimental and Numerical Investigation on DME Spray Characteristics as a Function of Injection Timing in a High Pressure Diesel Injector)

  • 김형준;박수한;이창식
    • 한국분무공학회지
    • /
    • 제14권3호
    • /
    • pp.109-116
    • /
    • 2009
  • The purpose of this study is the experimental and numerical investigation on the DME spray characteristics in the combustion chamber according to the injection timing in a common-rail injection system. The visualization system consisted of the high speed camera with metal halide lamp was used for analyzing the spray characteristics such as spray development processes and the spray tip penetration in the free and in-cylinder spray under various ambient pressure. In order to observe the spray characteristics as a function of injection timing, the piston head shape of re-entrant type was created and the fuel injected into the chamber according to various distance between nozzle tip and piston wall in consideration of injection timing. Also, the spray and evaporation characteristics in the cylinder was calculated by using KlVA-3V code for simulating spray development process and spray tip penetration under real engine conditions. It was revealed that the high ambient pressure of 3 MPa was led to delay the spray development and evaporation of DME spray. In addition, injected sprays after BTDC 20 degrees entered the bowl region and the spray at the BTDC 30 degrees was divided into two regions. In the calculated results, the liquefied spray tip penetration and fuel evaporation were shorter and more increased as the injection timing was retarded, respectively.

  • PDF

디젤 고압 분사 시스템에서 디젤-에탄올 혼합연료의 분무 및 미립화 특성에 관한 연구 (A Study on the Spray-atomization Characteristics of Diesel-ethanol Blended Fuels in a High Pressure Diesel Injection System)

  • 김세훈;박수한;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.80-87
    • /
    • 2010
  • The purpose of this paper is to analyze the effects of ethanol blending ratio and fuel temperature in diesel-ethanol blended fuel on the spray-atomization characteristics in a high pressure common-rail injection system. In this work, a diesel fuel and three blended fuels were used as test fuels. Blended fuels were made by blending ethanol with a purity 99.9% to diesel fuel, from 0% to 30%. In order to keep diesel-ethanol blending stability, 5% of biodiesel fuel as volumetric ratio was added into test fuels. The fuel temperature was controled in steps with 40K, from 290K to 370K. Macroscopic spray characteristics were investigated by analyzing the spray tip penetration and spray cone angle through spray images obtained from visualization system. In addition, in order to study microscopic spray characteristics of ethanol blended fuels, the droplet diameter, was analyzed using the droplet measuring system. It is revealed that the spray tip penetration is similar regardless of ethanol blending ratio. As ethanol blending ratio is increased, the spray cone angle becomes wider. It is shown that the spray cone angle is affected by low viscosity and density of ethanol. As the fuel temperature increases, the spray tip penetration and spray cone angle become shorter and narrower respectively. The SMD of ethanol blending fuels is smaller than that of diesel fuel because of low viscosity and surface tension of ethanol.