• Title/Summary/Keyword: Spray Structure

Search Result 427, Processing Time 0.028 seconds

Internal Structure and Weibull Modulus of $Al_2$$O_3$Ceramics Sintered with Addition of MgO (마그네시아 첨가 $Al_2$$O_3$세라믹스의 내부구조 및 Weibull Modulus)

  • 조용익;유선균;정상귀;조성용;김승재;오꾸미야마사타로
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.479-484
    • /
    • 2001
  • 고순도 알루미나 분말에 소결조제로서 MgO를 0ppm 및 500ppm 첨가하여 열분무건조기를 사용하여 준비한 과립을 80$0^{\circ}C$에서 하소를 함으로써 얻어진 과립으로 제작한 소결체의 MgO 첨가량에 따른 미세구조와 꺾임강도에 미치는 영향을 고찰하였다. 또한 시편두께를 50$mu extrm{m}$의 박편으로 가공하여 투광법으로 내부구조도 관찰하였다. MgO를 500ppm 첨가하여 제작한 과립을 180 MPa의 냉간정수압성형성 후 1$600^{\circ}C$에서 소결한 소결체는 상대밀도가 100%에 도달하였고 균일한 결정립성장의 치밀한 미세구조를 나타내었다. MgO를 500ppm 첨가한 시편의 4점 꺾임강도 또한 각 소결온도에서 MgO를 9ppm 첨가한 시편보다 23%-32%정도 높은 강도를 나타내었으며, 특히 소결온도 1$600^{\circ}C$에서는 꺾임강도가 501MPa 그리고 weibull 계수가 20의 고강도이면서 신뢰성이 높은 알루미나 소결체가 얻어졌다. 본 연구에서는 weibull 계수의 값이 높은 시편일수록 내부구조의 결함크기가 작고 이 작은 결함이 시편내부에 균일하게 분포되어 있음을 확인할 수 있었다.

  • PDF

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.

Dependence of Crosslinking Temperature on Swelling Behavior of Hyaluronic Acid Porous Microbeads Synthesized by a Modified Spray Method (노즐 낙하법으로 제조한 히알루론산 다공성 마이크로비드의 가교온도에 따른 팽윤특성)

  • Kim, Young-Hun;Lee, In-Kyu;Kim, Jin-Tae;Park, Ju-Hyun;Lee, Deuk Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.518-522
    • /
    • 2012
  • Hyaluronic acid (HA) microbeads were synthesized by dropping 0.5 wt% of sodium hyaluronate dissolved in NaOH into 0.2 vol% of divinyl sulfone dissolved in 2-methyl-1propanol at a speed of 0.005 ml/min. HA microbeads were collected from a divinyl sulfone crosslinker solution stirred at 200 to 400 rpm for 5 h at temperatures from room temperature to $60^{\circ}C$ at intervals of $10^{\circ}C$. The crosslinked microbeads were then cleaned thoroughly using distilled water and ethanol. SEM results revealed that the microbeads were white-colored spheres. The 3-D porous network structure of the microbeads became dense with an increase in the crosslinking temperature; however, no dependence of the crosslinking temperature on the microbead size was detected. The extent of swelling decreased from 970% to 670% with an increase in the crosslinking temperature from room temperature to $60^{\circ}C$, most likely due to the increase in the degree of crosslinking.

Numerical Analysis of Temperature Distribution of the Explosive Material in the Double-Layer Liners (이중층 라이너의 폭발 재료 온도 분포 수치해석)

  • Mun, Sang Ho;Kim, See Jo;Lee, Chang Hee;Lee, Seong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.202-210
    • /
    • 2016
  • The development of new concepts of liner is of great importance to effectively neutralize the enemy's attack power concealed in the protective structure or armored vehicles. A double layer liner has a combination of two different materials, one for penetration of target and the other for explosion after penetration. Therefore, it is of great importance to understand the temperature distribution before impact which should be lower than the explosive temperature of pure explosive material of the liner used. In this study, two different liner materials were obtained using cold spray coating and these material properties were characterized by DSC experiments. Numerical computations were done and the effect of temperature distribution and changes over time at each point of the explosive material depending on the layer types of the liner were discussed and analysed in the jet state.

A Study on Plasma Sprayed Porous Super Austenitic Stainless Steel Coating for Improvement of Bone Ingrowth (Bone ingrowth 향상을 위해 플라즈마 용사된 초내식성 오스테나이트 스테인리스강의 다공성 코팅층에 대한 연구)

  • 오근택;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 1996
  • The cementless fixation of bone ingrowth by porous coatings on artificial hip joint prostheses are replacing polymethylmethacrylate(PMMA) bone cement fixations. However, the major interests in the field of porous metal coating are environmental corrosivity accelerated by metal ion release, deterioration in the mechanical property of the coating, and the mechanical failure of the coatings as well as the substrate. Therefore, the selection of right materials for coatings and the development of porous coating techniques must be accomplished. Because of the existing problems in Ti and Ti alloys which are used extensively, this study is focused on the plasma spraying technique for coating on super stainless steel substrate. In order to determine the optimum conditions which satisfy the requirement for the porous coatings, under the plasma spraying, we selected the experimental parameters which extensively influenced on the characteristics of the coating through the pre-examination. Spray distance has been selected among 120, 160, and 200mm and primary gas flow rate among 70, 100, and 130 SCFH. Current and secondary gas($H_2$) flow rate was fixed at 400A, and 15 SCFH respectively. To understand the characteristics of the coatings, surface morphology, cross-sectional micro-structure, surface roughness, residual stress, and corrosion resistance were elucidated and the best conditions for the bone ingrowth improvement on artificial hip joint prostheses were found.

  • PDF

A study on the thermal properties of the 11 layer thermal barrier (11층 열장벽 피막의 고온물성에 관한 연구)

  • 권현옥;강현욱;남영민;송요승;홍상희;현규택;윤종구;이득용;김선화
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.1
    • /
    • pp.3-9
    • /
    • 2001
  • The purpose of this study is to evaluate the properties of the functional gradient thermal barrier coatings by plasma spray process. The evaluations of mechanical and thermal properties such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. Furthermore, residual stress and bond strength have been evaluated. The range of thickness of coated layers was 550~600$\mu\textrm{m}$. The range of hardness of layers was 800~900 Hv and the porosity range of coatings was about 7 to 14%. The top coating layer of $ZrO_2$ in thermal barrier was composed of tetragonal structure after spraying. The coated layers of $ZrO_2$ on the Inconel substrate is the best resistance for thermal fatigue. Those coatings had the least compressive stress in comparison with other coatings. In high temperature oxidation test, the coatings on Inconel substrate was better than the coatings on SUS substrate. The bond strength of the concave type was greater than that of linear types and convex types coatings.

  • PDF

A Hybrid Bilayer Pressure Sensor based on Silver Nanowire (은 나노와이어 기반 하이브리드 이중층 압력 센서)

  • Lee, Jin-Young;Shin, Dong-Kyun;Kim, Ki-Eun;Seo, Yu-Seok;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.31-35
    • /
    • 2017
  • We have fabricated flexible and stretchable pressure sensors using silver nanowires (AgNWs) and analyzed their electric responses. AgNWs are spray coated directly onto uncured polydimethylsiloxane (PDMS) such that AgNWs penetrate into the uncured PDMS, enhancing the adhesion properties of AgNWs. However, the single-layered AgNW sensor exhibits unstable electric response and low pressure sensitivity. To tackle it, we have coated a conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto the AgNW layer. Such a hybrid bilayer sensor ensures a stable electric response because the over-coating layer of PEDOT:PSS effectively suppresses the protrusion of AgNWs from PDMS during release. To enhance the sensitivity further, we have also fabricated a stacked bilayer AgNW sensor. However, its electric response varies depending sensitively on the initial overlap pressure.

  • PDF

A Study on the Application of Cathodic Protection for Anti-Corrosion of Automobile Body

  • Sohn, DaeHong;lee, Yongho;Jang, HeeJin;Cho, SooYeon
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • The use of cathodic protection for metals can be achieved by sacrificial anode CP or impressed current CP, or a combination of both. Cathodic protection is a highly effective anti-corrosion technique for submerged metals or metals in soil. But because the non-immersion atmospheric automobile environment is a high resistance environment, it is limited by fundamental cathodic protection. However, the application of cathodic protection to automobiles is attractive because of the possibility of maintaining corrosion resistance while using lower-cost materials. A commercially available product for automobiles that uses both sacrificial anode CP and impressed current CP was tested in a periodic salt spray environment to investigate the performance of the devices. Experimental results show that the metal to be protected has different anti-corrosion effects depending on the distance from the anode of the device, but it is effective for the entire 120 cm long specimen exposed with one anode. The cathodic protection is effective because the conductive tape attached to the anode of the structure to be protected acts as a constant electrolyte in wet and dry conditions. The results show that the entire standard passenger car can be protected by cathodic protection with 4 anodes.

Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets (Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석)

  • Lee, Jae-Won;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

A Study on the Measurement of Total Airborne Bacteria in the Process of Dismantling the Non-structure of Old Building (노후건축물 비구조체 해체과정에서의 총부유세균 발생량측정에 관한 연구)

  • Son, Byeung-Hun;Kang, Kyung-Ha;Lee, Ji-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.313-314
    • /
    • 2021
  • An old building over 30 years old continue to increase. Therefore, there will be more dismantling of old buildings in the future. Safety management of dismantling works is being strengthened. However, no consideration has been given to the effects of dismantling workers and their residents due to environmental hazards arising from the demolition process. Only spray and dust prevention measures are subject to inspection to minimize dust generation considering civil complaints around the site of dismantling work. In this paper, residential buildings, which account for the largest proportion of old buildings, were collected and identify total airborne bacteria and floating fungi among environmental hazards caused by non-structural dismantling work. Measurement results showed that workers during dismantling work are working in places with 4.8 times more total airborne bacteria than indoor air quality maintenance standards. Related research is needed for the health of dismantling workers.

  • PDF