• 제목/요약/키워드: Spray Spray Tip Penetration

검색결과 153건 처리시간 0.025초

2중 분류 가솔린 연료분사기들의 분무거동 및 미립화 특성 (Spray Behavior and Atomization Characteristics of Dual Stream Gasoline Injectors)

  • 송범근;김원태;강신재
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.112-120
    • /
    • 2005
  • The injector, which is used in a 4-valve gasoline engine, is required to be maintained the dual stream because of the design of dual intake port. In addition, the spray characteristics of fuel injector have strong influence on engine performance, exhaust emission, fuel consumption, and especially the cold start condition for the port injection. So, commercial gasoline injectors off different type were inspected. Those are 2 hole,4 hole, air shroud 4 hole, and air shroud 4 hole injector with separator. The spray behavior of dual stream was researched by the visualization system and PDPA system was employed to measure the droplet size. Atomization is one of the most important characteristic, so droplet size distributions and SMD are investigated. And the spray characteristics of each injector are also analyzed such as the spray tip penetration, spray angle, and separation angle.

모사 합성 가솔린 제조 및 분무 특성 분석 연구 (Study on Lab-scale Production of Simulated e-Gasoline and Analysis of Spray Characteristics)

  • 박정현;최나은;박수한
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.176-183
    • /
    • 2023
  • Many countries are striving to reduce carbon emissions with the goal of net zero by 2050. Accordingly, vehicles are rapidly being electrified to reduce greenhouse gases in the transportation sector. However, many organizations predict that internal combustion engines of LDV (light-duty vehicle) will exist even in 2050, and it is difficult to electrify aircraft and large ships in a short time. Therefore, synthetic fuel (i.e., e-Fuel) that can reduce carbon emissions and replace existing fossil fuels is in the spotlight. The e-Fuel refers to a fuel synthesized by using carbon obtained through various carbon capture technologies and green hydrogen produced by eco-friendly renewable energy. The purpose of this study is to compare and analyze the injection and spray characteristics of the simulated e-Gasoline. We mixed the hydrocarbon fuel components according to the composition ratio of the synthetic fuel produced based on the FT(Fischer-Tropsch) process. As a result of injection rate measurement, simulated e-Gasoline showed no significant difference in injection delay and injection period compared to standard gasoline. However, due to the low vapor pressure of the simulated e-Gasoline, the spray tip penetration (STP) was lower, and the size of spray droplets was larger than that of traditional gasoline.

머신러닝을 이용한 다공형 GDI 인젝터의 플래시 보일링 분무 예측 모델 개발 (Development of Flash Boiling Spray Prediction Model of Multi-hole GDI Injector Using Machine Learning)

  • 상몽소;신달호;;박수한
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.57-65
    • /
    • 2022
  • The purpose of this study is to use machine learning to build a model capable of predicting the flash boiling spray characteristics. In this study, the flash boiling spray was visualized using Shadowgraph visualization technology, and then the spray image was processed with MATLAB to obtain quantitative data of spray characteristics. The experimental conditions were used as input, and the spray characteristics were used as output to train the machine learning model. For the machine learning model, the XGB (extreme gradient boosting) algorithm was used. Finally, the performance of machine learning model was evaluated using R2 and RMSE (root mean square error). In order to have enough data to train the machine learning model, this study used 12 injectors with different design parameters, and set various fuel temperatures and ambient pressures, resulting in about 12,000 data. By comparing the performance of the model with different amounts of training data, it was found that the number of training data must reach at least 7,000 before the model can show optimal performance. The model showed different prediction performances for different spray characteristics. Compared with the upstream spray angle and the downstream spray angle, the model had the best prediction performance for the spray tip penetration. In addition, the prediction performance of the model showed a relatively poor trend in the initial stage of injection and the final stage of injection. The model performance is expired to be further enhanced by optimizing the hyper-parameters input into the model.

중공 원추형 연료 분무의 미립화 및 벽 충돌 과정에 대한 연구 (A Study on Atomization and Wall Impingement Process of Hollow-Cone Fuel Spray)

  • 심영삼;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.132-138
    • /
    • 2006
  • Numerical analysis about atomization and wall impingement process of hollow-cone fuel spray is performed by a modified KIVA code with hybrid model. The atomization process is modeled by using hybrid breakup model that is composed of Linearized Instability Sheet Atomization(LISA) model and Aerodynamically Progressed Taylor Analogy Breakup(APTAB) model. The Gosman model, which is based on the droplet behaviors after impingement determined by experimental correlations, is used for spray-wall impingement process. The LIEF technique was used to compare the results with those of experiment. The calculations and experiments are carried out at the ambient pressures of 0.1 MPa and 0.5 MPa and the ambient temperature of 293K. It was found that the calculated results show satisfactory agreement with experimental ones.

분위기 조건이 직접분사식 인젝터의 미립화에 미치는 영향 (Effects of Ambient Conditions on the Atomization of Direct Injection Injector)

  • 이중순
    • 한국분무공학회지
    • /
    • 제6권1호
    • /
    • pp.25-34
    • /
    • 2001
  • Several efforts to meet the exhaust gas regulation have been undertaken by many researchers in recent years. Main researches are on development of design techniques of intake port and combustion chamber, atomisation of fuel and precise control of air-fuel ratio, post-treatment of exhaust gas and so on. Engine technology is changed from PFI to GDI to correspond with exhaust gas regulation. GDI technique makes it possible to preserve lean air-fuel ratio and control accurate air-fuel ratio. Nevertheless, It is not cleared that information of spray characteristics and atomization process are very dependent on fluctuation of pressure and change of temperature in intake stroke. In this study, a constant volume combustion chamber is manufactured to investigate various fluctuations of in-cylinder pressure for injection duration. It is taken photographs of injection process of conventional GDI injector using PMAS. Then, it was verified experimently that ambient conditions as temperature and pressure of combustion chamber have effects on process of spray growth and atomization of fuel.

  • PDF

주위기체 밀도변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향 (Effect of the Change in Ambient Gas Density on the Mixture Formation Process in Evaporative Free Diesel Spray)

  • 염정국;정성식
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.209-213
    • /
    • 2005
  • The effects of density change of ambient gas on mixture formation process have been investigated in high temperature and pressure field. To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Ambient gas density was selected as experimental parameter. The ambient gas density was changed from $r_a=5.0kg/m^3\;to\;r_a=12.3kg/m^3$ with a high pressure injection system(ECD-U2). For visualization of the experiment phenomenon, a CVC(Constant Volume Chamber) was used in this study. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas.

  • PDF

루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구 (Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines)

  • 채수;유홍선
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF

GDI 분무거동 해석을 위한 혼합분열모델 및 증발모델의 검증 (Validation of Hybrid Breakup Model and Vaporization Model for Analysis of GDI Spray Behavior)

  • 심영삼;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.187-194
    • /
    • 2005
  • The objective of this study is to validate the hybrid breakup model and the vaporization model for GDI spray analysis at vaporization and non-vaporization conditions. The atomization process is modeled by using hybrid breakup model that is composed of Linearized Instability Sheet Atomization (LISA) model and Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model. The vaporization process is modeled by using modified Abramzon & Sirignano model. The exciplex fluorescence method was used for comparing the calculated results with the experimental ones. The experiment and the calculation were performed at the ambient pressures of 0.1 MPa, 0.5 MPa and 1.0 MPa and the ambient temperature of 293K and 473K.

디이젤 噴霧 周圍氣體의 엔트레인먼트에 관한 實驗的 硏究 (Experimental Investigation of Entrainment of Ambient Gases into Diesel Spray)

  • 하종률;김봉곤
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.534-540
    • /
    • 1988
  • 본 연구에서는 디이젤분무 주위기체의 유동특성중에서 유동속도에 관하여 보 고 하였다. 본모에서는 분무기간중 분사압력의 시간경과특성이 상이한 두 종류의 분 사계를 사용하여 생성된 분무와 주위 기체와의 유동방향의 시간경과 및 유입시기, 정 상유입속도 도달시간등을 분무의 축방향과 반경방향에 대하여 상세한 측정결과를 얻었 기에 보고한다.

직접분사식 가솔린 선회분사기 개발에 관한 연구 (Development of Gasoline Direct Swirl Injector)

  • 박용국;이충원
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.78-86
    • /
    • 2001
  • The Gasoline Direct Injection(GDI) system has been highlighted due to the improvement of fuel consumption and the control of exhaust emission from gasoline engines. The GDI system includes a high injection pressure, smaller mean diameter, good spray characteristics and stability. We were interested in the development for gasoline direct swirl injector(GDSI) in which the swirler is specially designed with an incident angle. Nymerical analysis was utilized to investigate the internal flow of GDSI with a goal to determine the swirl incident angle and needle lift. Accordingly, it describes characteristics of a GDSI in which the flowrate and spray characteristics are satisfied. especially the spray tip penetration decreases, compared with other type GDI, mean diameter of droplets is from 20${\mu}{\textrm}{m}$ to 25${\mu}{\textrm}{m}$ and spray angle ranges from 64$^{\circ}$to 66$^{\circ}$.