• Title/Summary/Keyword: Spray Development

Search Result 674, Processing Time 0.024 seconds

NiAl Behavior at Plasma Spray Deposition

  • Orban, Radu L.;Lucaci, Mariana;Rosso, Mario;Grande, Marco Actis
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.692-693
    • /
    • 2006
  • Behavior of stoichiometric and near-stoichiometric NiAl at plasma spray deposition, without and with a bond coat, for coating layers realization on a low alloyed steel substrate, has been investigated. In all variants, NiAl particle melting and subsequent welding at the impact with substrate were observed, forming a relatively compact and adherent coating layer with the NiAl stability maintaining - all assuring the coating layer oxidation and corrosion resistance. Good results from these points of view, also validated through corrosion tests, were obtained for 45:55 Ni:Al composition without a bond coat but adopting an Ar protective surrounding of plasma jet.

  • PDF

Development of Gasoline Direct Swirl Injector (직접분사식 가솔린 선회분사기 개발에 관한 연구)

  • Park, Yong-Guk;Lee, Chung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.78-86
    • /
    • 2001
  • The Gasoline Direct Injection(GDI) system has been highlighted due to the improvement of fuel consumption and the control of exhaust emission from gasoline engines. The GDI system includes a high injection pressure, smaller mean diameter, good spray characteristics and stability. We were interested in the development for gasoline direct swirl injector(GDSI) in which the swirler is specially designed with an incident angle. Nymerical analysis was utilized to investigate the internal flow of GDSI with a goal to determine the swirl incident angle and needle lift. Accordingly, it describes characteristics of a GDSI in which the flowrate and spray characteristics are satisfied. especially the spray tip penetration decreases, compared with other type GDI, mean diameter of droplets is from 20${\mu}{\textrm}{m}$ to 25${\mu}{\textrm}{m}$ and spray angle ranges from 64$^{\circ}$to 66$^{\circ}$.

Breakup Process and Wave Development Characteristics of Gel Propellant Simulants at Various Gelling Agent Contents (젤 모사 추진제의 점도 변화에 따른 분무 분열 및 파장 변화 특성)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Jung-Hun;Kim, Do-Hun;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.140-145
    • /
    • 2011
  • Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the breakup process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. The breakup process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action.

Breeding of Light yellow Color Spray Carnation 'Leo' for Cut Flower (연노랑색의 절화용 스프레이 카네이션 '레오' 육성)

  • Kwon, Oh-Keun;Shin, Hak Ki;Choi, Seong Roul;Joung, Hyang Young;Lee, Jung-Soo
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.4
    • /
    • pp.245-247
    • /
    • 2011
  • A new spray carnation cultivar 'Leo' was released by the National Institute of Horticultural and Herbal Science in 2003. A cross was made between spray cultivar 'Ballantyne' and 'West peachy' in 1999. After investigation of the characteristics four years (from 2001 to 2003), it was finally selected in 2003. 'Leo' is a spray cultivar with light yellow color for a cut flower. The main characteristics are multi branching, long vase life and early flowering habit than 'Diamond'(control). It has medium resistance to Fusarium wilt and 9 days vase life.

An Experimental Study on Spray Characteristics of Bio-diesel fuel in Three Injectors with Different Operating Mechanism for Common-rail System (커먼레일 시스템용 구동방식에 따른 인젝터별 바이오디젤 분무 특성 연구)

  • Sung, Gisu;Kim, Jinsu;Jeong, Seokchul;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.88-94
    • /
    • 2015
  • Recently, exhaust gas regulation has been gradually strengthened due to depletion of fossil fuels and environmental problem like a global warming. Due to this global problem, the demand for eco-friendly vehicle development is rapidly increasing. A clean diesel vehicle is considered as a realistic alternative. The common-rail fuel injection system, which is the key technology of the clean diesel vehicle, has adopted injection strategies such as high pressure injection, multiple injection for better atomization of the fuel. In addition, the emission regulations in the future is expected to be more stringent, which a conventional engine is difficult to deal with. One of the way for actively proceeding is the study of alternative fuels. Among them, the bio-diesel has been attracted as an alternative of diesel. So, in this study, spray characteristics of bio-diesel was analyzed in the common-rail fuel injection system with three injectors driven by different operating mechanism.

A Study on the Statistical Analysis of the Flow Characteristics of Droplet in the Cross Region of Twin Spray (이중분무 교차지역에서의 액적유동특성의 통계학적 분석에 관한 연구)

  • 조대진;윤석주;최태민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.635-644
    • /
    • 1994
  • This study investigated mainly on the flow characteristics of a droplet in the cross region of twin spray. The velocities of the droplet were measured along the axial and radial direction, and the flow characteristics of the droplet were statistically analyzed. For the statistical analysis, the probability density of the turbulent components has been studied, and then the Reynolds shear stress, the skewness and the flatness factors were calculated, and compared with the Gaussian value. Two pressure swirl stomizers were used for the twin spray system and kerosene was employed as the working liquid. 2-D PDA(particle dynamic analyzer) was used for the purpose of the measurement of droplet size and velocities. As a result, it was found that (1) the droplets collision was taken place strongly in the cross region. So, a large momentum loss of droplets due to the loss of natural movement direction was occurred, and momentum loss of radial direction was greater than that of axial direction. (2) The axial direction skewness factor approached to zero like the Gaussian distribution in the cross region of twin spray. (3) In the cross region of twin spray, the fluctuation instability of droplet was increased because of the development of the turbulence characteristics due to the droplet collision.

The effect of air and spray turbulence in a D.I. diesel engine on the flame progress (直接噴射式 디이젤機關의 燃燒室形狀과 火焰의 發達)

  • ;;Ohta, Motoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.44-52
    • /
    • 1987
  • For the favorable performance of a D.I. diesel engine, it is important to improve the mixture formation process and the ensuing early stage of combustion process. In the present paper, high speed photography was employed to investigate the effectiveness of a cavity digged in a piston crown for some more useful utilization of air. The cavity would function to improve mixing of fuel and air by the increase of turbulence of air and by the impingement of fuel spray on the cavity wall. The results obtained are summarized as follows: (1) From an aspect of thermal efficiency, it is effective to inject the spray tangentially to the cavity wall to enlarge the area of spray evaporation. (2) some deductions obtained from previous investigations using a hot air stream duct are supported by the present results. For example, it is effective for the quick development of flames throughout the combustion chamber to mix the evaporated fuel of main spray with the intermediates brought about by the early stage of combustion of the preceded auxiliary fuel spray.

Development of a 15-day Interval Spraying Program for Controlling Major Apple Diseases

  • Lee, Dong-Hyuck;Kim, Dae-Hee;Shin, Ho-Cheol;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.439-446
    • /
    • 2008
  • A fungicidal spray program for effective control of three major apple diseases in Korea (white rot, bitter rot, and Marssonina blotch) was developed. This was based on our previous studies showing that application of ergosterol biosynthesis inhibitors (EBIs) in early or mid-August can eradicate white rot infection in fruit and that some protective fungicides show after-infection activity against white rot. The basic spray program focused on control of white rot, the main target disease, and the fungicides were sprayed at 15-day intervals from petal fall to late August using fungicides that show after-infection and EBI activity. The basic spray program was modified over 4 successive years to improve control efficacy against bitter rot and Marssonina blotch, which sometimes cause as much damage as white rot. Modifications to the regime were made every year by replacing one fungicide in the basic program at a specific spraying time. Substitution of only one fungicide in the spray program, even early in the growing season, greatly influenced the final disease incidence at harvest. Applying this principle, a moderately efficient spray program for cv. Fuji that increased the spray interval from 10 to 15 days and thus reduced the number of sprays required per crop season was developed.

Development and Application of a New Spray Impingement Model Considering Film Formation in a Diesel Engine

  • Ryou, Hong-Sun;Lee, Seong-Hyuk;Ko, Gwon-Hyun;Hong, Ki-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.951-961
    • /
    • 2001
  • The present article presents an extension to the computational model for spray/wall interaction and liquid film processes that has been dealt with in the earlier studies (Lee and Ryou, 2000a). The extensions incorporate film spread due to impingement forces and dynamic motion induced by film inertia to predict the dynamic characteristics of wall films effectively. The film model includes the impingement pressure of droplets, tangential momentum transfer due to the impinging droplets on the film surface and the gas shear force at the film surface. Validation of the spray/wall interaction model and the film model was carried out for non-evaporative diesel sprays against several sources of experimental data. The computational model for spray/wall interactions was in good agreement with experimental data for both spray radius and height. The film model in the present work was better than the previous static film model, indicating that the dynamic effects of film motion should be considered for wall films. On the overall the present film model was acceptable for predication of the film radius and thickness.

  • PDF

Characterization of the internal flow and fuel spray from an impinging flow nozzle (노즐분공내 유체충돌이 있는 디젤노즐의 유동 및 분무특성 연구)

  • Ha, Seong-Eop;Kim, Heung-Yeol;Gu, Ja-Ye;Ryu, Gu-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1635-1646
    • /
    • 1997
  • The nozzle length to diameter ratio of real diesel nozzles is about 2-8 which is not long enough for a fully developed and stabilized flow. The characteristics of the flow such as turbulence at the nozzle exit which affect the development of the spray can be enhanced by impinging the flow inside nozzle. The flow details inside the impinging nozzles have been investigated both experimentally and numerically. The mean velocities, the fluctuating velocities, and discharge coefficients in the impinging inlet nozzles, round inlet nozzle, and sharp inlet nozzle were obtained at various Reynolds number. The developing feature of the external spray were photographed by still camera and the droplet sizes and velocities were also measured by laser Doppler technique. The spray angle was greater and the droplet sizes near the spray axis were smaller with the impinging flow inside nozzle.