• Title/Summary/Keyword: Spray Deposits

Search Result 13, Processing Time 0.021 seconds

A study on the formation and mechanical properties of the spray deposits by thermal spray (용사법에 의한 용사층의 형성과 기계적 성질에 관한 연구)

  • 최기영;박동환;김명호
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.55-62
    • /
    • 1989
  • Variation of the spray droplet velocity with spraying distance and the microstructural characteristics of spray deposits fromed by oxy-fuel thermal spraying with Ni-base alloy powder contained chrome boride for hard facing were examined. Measurements of spray droplet velocity as a function of distance from the nozzle tip were inexcellent agreement with computer simulated predictions. Optimum condition for thermal spray deposits in this experiment was found to be under #10kg/cm^2$ of acceleration gas pressure with 15cm of spraying distance. Fine microstructure and higher microhardness of the initial part of the deposits due to rapid solidification were found to be able to maintained in a thickness up to 0.4mm, and this initial microstructure and properties could be maintained throughout the thickness of a thick spray deposits by performing the multipass spraying with 0.4mm thickness of each pass.

  • PDF

Comparison of Spray Characteristics of n-Heptane and Propane Using Spray Visualization in Direct Injection System (분무 가시화를 통한 직분사 시스템에서 n-heptane및 propane의 분무발달특성 비교)

  • Junkyu Park;Sungwook Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.32-42
    • /
    • 2023
  • In this study, spray characteristics of n-heptane and propane were investigated under different injection pressure using various imaging techniques such as Mie-scattering, DBI (diffuse back-illumination), and Schlieren imaging techniques. NI compact RIO system was used to control a test injector. Spray penetration length, length-to-width ratio and number of black pixels were calculated by using MATLAB software to compare spray characteristics of each fuel. Longer spray penetration length and higher length-to-width ratio were observed in propane spray because of flash boiling caused by high saturated vapor pressure. Spray collapse occurred in propane spray due to the high plume-to-plume interaction. Moreover, rapid evaporation occurred in propane spray, so that nozzle tip wetting could not be observed. Rapid evaporation of propane also caused fewer residual droplets compared to n-heptane spray. Therefore, propane is advantageous in reducing the generation of soot emission from large droplets that are not atomized. However, additional evaluation should be conducted considering combustion efficiency and the possibility of deposits by nozzle tip icing during fuel injection.

Effect of Oral Spray on Dental Plaque Bacteria and Oral Epithelial Cells

  • Kim, Myoung-Hee;Lee, Min Kyeng;Hwang, Young Sun
    • Journal of dental hygiene science
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2019
  • Background: Good oral health is important for systemic body health and quality of life. Spray oral cleansers are increasingly preferred because of their convenience of carrying and the ease of oral hygiene management. In addition, many kinds of oral cleanser products containing various ingredients with antibacterial, washing, and moisturizing effects are being manufactured. However, concerns about the safety and side effects of oral sprays are increasing, and there is very little information regarding the use and care of oral sprays is available to consumers. This study aimed to investigate the effects of oral spray on oral bacteria and tissue to elucidate the factors that need to be considered when using oral sprays. Methods: The effects of oral spray on the growth of dental plaque bacteria was assessed using disk diffusion assays. Cytotoxicity and morphological changes in oral epithelial cells were observed by microscopy. The effects of oral spray on dental plaque growth were also confirmed on specimens from permanent incisors of bovines by Coomassie staining. Results: The pH of spray products, such as Perioe Dental Cooling, Cool Sense, and Dentrix, were 3.65, 3.61, and 6.15, respectively. All tested spray products showed strong toxicity to dental plaque bacteria and oral epithelial cells. Compared with those on the control, dental plaque bacteria deposits on the enamel surface increased following the use of oral spray. Conclusion: Three types of oral spray, namely Perioe Dental Cooling, Cool Sense, and Dentrix, strongly inhibited the growth of dental plaque bacteria and oral epithelial cells. The oral spray ingredient enhanced dental plaque growth on the enamel surface. Users should be informed of precautions when using oral sprays and the need for oral hygiene after its use.

Spray and Depositional Characteristics of Electrostatic Nozzles for Orchard Sprayers (과수 방제기용 정전대전 노즐의 분무 및 부착특성)

  • 강태경;이동현;이채식;이공인;최완규;노수영
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • Spraying is one of the most efficient methods for pesticide and insecticide control. Generally, orchard sprayers(aircarrier sprayer) are used for such applications. However, when an orchard sprayer is used, only 20% of total amount of spray deposits on the target. The rest of spray are not only wasted but are also potential sources of environmental pollution. The research far the development of electrostatic spraying system for orchard sprayer was conducted to develop the new pesticide application technology for the reduction of environmental pollution and f3r the production of safe agricultural products. The spray characteristics for nozzles with the different charging methods were tested and the effect of electrostatic charge was analyzed, in the laboratory experiments. The results of this study indicate that the capacitive type of electrostatic spraying nozzle exhibits a large current deposition of water sprays on the sample target. The covering area ratio by conventional spraying system was 10.2%, while that of electrostatic sprays with pulse induction charging method gave the increased covering area ratio by 4.3 times.

Deposit Amounts of Dithianone on Citrus leaves by Different Spray Methods (살포 방법에 의한 살균제 Dithianon의 감귤 잎 부착량 비교)

  • Jeon, Hye-Won;Hong, Su-Myeong;Hyun, Jae-Wook;Hwang, Rok-Yeon;Kwon, Hye-Young;Kim, Taek-Kyum;Cho, Nam-Jun
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In order to obtain efficient control effect of the pesticide, it is important to ensure uniform adhesion to the desired plant parts at the right time. Pesticide spray method (application technology) is an important factor affecting the efficacy and crops persistent expression. The aim of this study was to develop an efficient system to investigate the coating weight distribution of citrus leaves due to the difference between the nozzle and spray sprinkler system using dithianon used in citrus scab. Other An, engine type sprayer was used as the control. Speed sprayer and different sprinklers were wsed to way the deposit amounts of dithianon on citrus leaves. The test was conducted at the National Institute of Horticultural Herbal Science Citrus Research Station, located in the circle citrus Jeju Island. In order to examine whether the citrus orchard spray and the evenl on the whole, dithianon (43% flowable 1000-fold dilution) was sprayed, filter paper and leaves were analyzed by the height as top, middle, bottom. Speed sprayer the was most effective on depositing at the middle position, of the leaves. All other sprays the leaces except the dry mist sprinkler were not effective enough to deposit on the back sides. To achieve more deposits on the high position leaves, an improve ment in the nozzle and an efficient power system of sprayer were needed.

Orientation and Defects of $SnO_2$ Films Deposited by Spray Pyrolysis (무열분해법으로 증착한 $SnO_2$ 박막의 방향성과 결함구조)

  • Kim, Tae-Heui;Park, Kyung-Bong
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.137-144
    • /
    • 1998
  • Tin oxide films deposited by spray pyrolysis have defects and preferred orientations according to the temperature of substrate. The growth of crystalline deposits began at the substrate temperature of $300^{\circ}C$. With increasing substrate temperature the plane (200) groved preferentially and above $400^{\circ}C$, planes of higher indices. Grain size increased with increasing substrate temperature up to $400^{\circ}C$. Undoped film is composed of Sn and O, and contains oxygen vacancies. Film doped with antimony has defects such as oxygen vacancies, antimony substituted on Sn and chlorine on oxygen.

  • PDF

Size Distribution of Droplets Sprayed by an Orchard Sprayer (과수방제기 살포입자의 직경 분포특성)

  • 구영모;신범수;김상헌
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2001
  • Generated agri-chemical droplets by orchard sprayers are evaporated regenerated and transported along wind streams. The droplets are deposited to targets after changing their sizes, affecting the retention of droplets. An orchard sprayer, designed for spraying grapevines was studied on the spatial distribution of droplet size. The experimental variables were spray direction (0, 22.5, 45, 67.5 and 90˚), distance(2.5, 3.0 and 3.5 m) and fan speed (2,075 and 3,031 rpm). Droplet sizes were converted and analyzed from spray stains, sampled using water sensitive papers. The number median diameter (NMD) increased with an increase of the distance due to disappeared fine droplets (<50 ㎛): however, the volume median diameter (VMD) decreased due to shrunken large droplets (>100 ㎛). Fast fan speed delivered large droplets to 3.5 m, but the spatial distributions of NMD and VMD were not uniform. Slower fan speed decreased the possibility of evaporation and drift; therefore, plenty of droplets were maintained up to 3.0 m. The upward blasting distance was limited within 3 m, but the limit to the ground level was extended to 3.5 m. Concentrated wind and droplets to the ground level should be redistributed to upper canopy direction, leading more uniform deposits. High speed wind and system pressure should be avoided because of generating fine droplets, which would be disappeared and drifted away.

  • PDF

Research on the Solution and Properties of Ni-P/n-$Al_2O_3$ Electroless Composite Plating

  • Huang, Yan-bin;Liu, Fei-fei;Zhang, Qi-yong;Ba, Guo-zhao;Liang, Zhi-jie
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.257-260
    • /
    • 2007
  • In order to further improve the corrosion resistance and wear resistance of the Ni-P coatings of electroless plating, electroless Ni-P/n-$Al_2O_3$ composite deposits were prepared by adding some nano $Al_2O_3$ Particles in Ni-P plating bath. The bath composition and proproties were studied in this paper. The orthogonal test was applied in order to get the new composite solution, taking the initial stable potential as evaluation standard and considering the elements correlation at the same time. The processing parameters have been optimized by single factor experiment in which the depositing speed was chosen as the evaluation standard. The results showed that the process is stable and the composite Ni-P/n-$Al_2O_3$ deposits werebright and smooth, whose hardness and corrosion resistance are much better than simple Ni-P coatings. Furthermore the surface appearance and structure of the composite Ni-P/n-$Al_2O_3$ coating were investigated by SEM and XRD method. It was proved that the coating surface is typical cystiform cells and its structure is amorphous. All test results ofcomposite coating showed that all various physical coating properties had been improved by adding nano-particles. The hardness of optimal coating is more than 600HV and increases to 1000HV after heat-treating, and its hardness is 20~50% higher than Ni-P coating. The rust points appeared in 200 hour by immersing the coating into the 10%HCl solution and the corrosive speed is $3{\times}10^{-3}mg/(cm^2{\cdot}h)$which was obtained after 300 hour. In the same condition Ni-P coating is $5.6{\times}10^{-3}mg/(cm^2{\cdot}h)$. The salt spray resistance of the layers can exceed 600h with the thickness $20{\mu}m$.

Effects of Injector Design Parameter on Nozzle Coking in Diesel Engines (디젤 엔진의 인젝터 설계 변수가 노즐 코킹에 미치는 영향 분석)

  • Kim, Yongrae;Song, Hanho
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.140-145
    • /
    • 2012
  • Recent common-rail injector of a diesel engine needs more smaller nozzle hole to meet the stringent emission regulation. But, small nozzle hole diameter can cause nozzle coking which is occurred due to the deposits of post-combustion products. Nozzle coking has a negative effect on the performance of fuel injector because it obstructs the fuel flow inside a nozzle hole. In this study DFSS (Design for six sigma) method was applied to find the effect of nozzle design parameter on nozzle coking. Total 9 injector samples were chosen and tested at diesel engine. The results show that nozzle hole diameter and K-factor have more effect on nozzle coking than A-mass and hole length. Large hole diameter and A-mass, small hole length and K-factor give more positive performance on nozzle coking in these experimental conditions. But, a performance about nozzle coking and exhaust gas emission shows the opposite tendency. Further study is needed to find the relation between nozzle coking and emission characteristic for the optimization of injector nozzle design.

Fate of Acetamiprid and Imidacloprid aerially applied to the Pine Forest (항공살포에 따른 Acetamiprid와 Imidacloprid의 산림환경 중 행적)

  • Kim, Chan-Sub;Kwon, Hye-Young;Son, Kyeong-Ae;Gil, Geun-Hwan;Kim, Jin-Bae
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • Fate of acetamiprid and imidacloprid aerially sprayed to control pine wood nematode (Bursaphelenchus xylophilus) were studied in a forest of Haman area. Acetamiprid 20% SL or imidacloprid 20% DC were diluted 100 times and applied two times as rate of 50 L/ha using an aircraft of Bell 206 L helicopter. Average acetamiprid deposits on forest floor ranged from 2 to 4% of standard aerial application rate. Following to the second application, acetamiprid deposits in the pine needle ranged 1.8~8.5 mg/kg and then gradually decreased to 1.2~2.1 mg/kg after 48 days. Deposits on the plant washed off by rainfall and reached to soil surface was ca. 17% of the application rate. All of acetamiprid on the ground resided in the forest floor covering the soil surface, where acetamiprid residues were decreased to a quarter at 48 days after the second application, but they were not detected in soil beneath it. And the only low level of acetamiprid residues, 0.0003 mg/L, was detected in the reservoir nearby the experimental forest on the day of aerial application. The acetamiprid detection was presumably due to spray drift. And average imidacloprid deposits on forest floor ranged from 1 to 3% of standard aerial application rate. Following to the second application, imidacloprid deposits in the pine needle analysed very low concentration of 0.1 mg/kg, but the amount of imidacloprid in wash-off in standard and two-fold treatment were ca. 8% and 4% of the application rate, respectively. Most of imidacloprid on the ground also resided in the forest floor, where imidacloprid residues were decreased to a twentieth at 111 days after the second application, and they were detected below 0.5% of the application rate in sol beneath it. And the low level of imidacloprid, 0.0003~0.0017 mg/L, were detected in the streams in the experimental forest. It was not to the level of contamination concerns.