• 제목/요약/키워드: Spray Breakup

검색결과 205건 처리시간 0.028초

고온.고압의 분위기 조건에서 GDI 분무의 분열 및 증발과정에 대한 수치적 연구 (The Numerical Study on Breakup and Vaporization Process of GDI Spray under High-Temperature and High-Pressure Conditions)

  • 심영삼;황순철;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.44-50
    • /
    • 2004
  • The purpose of this study is to improve the prediction ability of the atomization and vaporization processes of GDI spray under high-pressure and high-temperature conditions. Several models have been introduced and compared. The atomization process was modeled using hybrid breakup model that is composed of Conical Sheet Disintegration (CSD) model and Aerodynamically Progressed TAB(APTAB) model. The vaporization process was modeled using Spalding model, modified Spalding model and Abramzon & Sirignano model. Exciplex fluorescence method was used for comparing the calculated with the experimental results. The experiment and calculation were performed at the ambient pressure of 0.5 MPa and 1.0 MPa and the ambient temperature of 473k. Comparison of caldulated and experimental spray characteristics was carried out and Abramzon & Sirignano model and modified Spalding model had the better prediction ability for vaporization process than Spalding model.

비증발 디젤분무의 분열과 미립화 과정의 가시화 (Visualization of Breakup and Atomization Processes in Non-evaporating Diesel Sprays)

  • 원영호;김우태
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.25-31
    • /
    • 2004
  • Two-dimensional laser visualization methods have been used in the study of breakup and atomization processes of non-evaporating diesel sprays. A single-hole spray injected into a quiescent atmospheric environment was visualized by the LIF(Laser Induced Fluorescence) and scattering technique. The LIF technique could be implemented to take the images which are magnified enough to show the shape of liquid ligaments and small droplets. The spontaneous scattering and fluorescent images of sprays were also taken to investigate the atomization of droplets. In the tip and periphery of a spray. the scattering light is bright and the ratio of fluorescent/scattering intensity is lower. This characteristics indicate the very high number density of small droplets which are well atomized.

초임계상태 분무의 분무 특성에 관한 연구 (The Study on the Spray Characteristics of Supercritical Spray)

  • 박찬준
    • 한국분무공학회지
    • /
    • 제4권3호
    • /
    • pp.8-14
    • /
    • 1999
  • The characteristics of the breakup process in supercritical spray is investigated during the injection of supercritical sulfur hexafluoride into dissimilar gases at supercritical pressures and subcritical temperature of the injected fluid. The visualization techniques used are backlighting and shadowgraph methods. The spray angles are measured and the breakup and mixing process are observed at near and supercritical conditions. The results show that spray angles are decreased with the in..ease of the ratio of density $(\frac{\rho_f}{\rho_g})$. At the supercritical temperature, the spray angles in atomization region are kept nearly constant such as the typical spray angle in gas injection. The mixing process is changed radically at the temperature where $\frac{d\rho}{dT}=\frac{1}{2}[\frac{d\rho}{dT}]_{max}$ at given pressure.

  • PDF

액체추진제 추력기 인젝터 분무액적의 2차원 공간분포 (Two-Dimensional Distribution of Spray Droplets Emanating from an Injector of Liquid-Propellant Thruster)

  • 정훈;김진석;김정수;김성초;박정;장기원;서혁
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.135-138
    • /
    • 2007
  • 액체추진제 추력기에 사용되는 인젝터 분무액적의 2차원 공간분포 특성을 이중모드 위상도플러속도계(dual-mode phase Doppler anemometry, DPDA) 기법을 적용하여 고찰하였다. 분무액적의 속도, 난류강도, Sauter 평균직경(Sauter mean diameter, SMD), 수밀도, 그리고 체적플럭스 등의 분무분열특성 매개변수 변이를 정량화 하여 인젝터 분무의 거시적 거동을 규명한다. 본 연구는 추력기의 성능특성 이해는 물론 새로운 추력기의 설계기반 구축에 기여할 수 있을 것이다.

  • PDF

벽면 캐비티 각에 따른 GDI 분무의 벽 충돌 과정에 대한 수치적 연구 (Numerical Study on Wall Impingement Process of GDI Spray According to Wall Cavity Angle)

  • 심영삼;김덕줄;최경민
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.971-978
    • /
    • 2007
  • A spray-wall impingement process of a hollow-cone fuel spray from the high-pressure swirl injector in the Gasoline Direct Injection (GDI) engine were experimented and calculated at various wall geometries. The Linearized Instability Sheet Atomization (LISA) & the Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model and the Gosman model were applied to model the breakup and the wall impingement process of the hollow-cone fuel spray. The numerical modelings were implemented in the modified KIVA code. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental results by the Laser Induced Exciplex Fluorescence (LIEF) technique. The droplet size distribution and the ambient gas velocity field, which are generally difficult to obtain by the experimental methods, were also calculated and discussed. It was found that the radial distance after wall impingement and Sauter Mean Diameter (SMD) decreased with increasing a cavity angle.

A Study on the Characteristics of an Oscillating Fluidic Atomizer

  • Kim, K.H.;Kiger, K.;Lee, W.
    • 한국분무공학회지
    • /
    • 제11권2호
    • /
    • pp.105-112
    • /
    • 2006
  • A unique feature of fluidic atomizers is that the nozzle geometry produces a thin capillary Jet which is forced to oscillate on a 2-dimensional plane through the use of a passive feedback mechanism. The objective of the current work is to characterize the influence of the stagnation pressure at the nozzle exit, jet oscillation and stretching on the breakup properties of the capillary ligament. To achieve this, shadow graph technique is used to measure size, shape, velocity and the number density of the droplets as a function of the position within the spray fan. The breakup length, defined as the radial distance from the breakup point, is analyzed as a function of the non-dimensional parameters. Finally, a kinematic model is developed to simulate the breakup of the oscillating jets at low stagnation pressures. Using the existing jet breakup theories, the model is used to predict the size and diameter distribution of the droplets after primary atomization.

  • PDF

고압환경에서 동축 스월 분사기 분무 특성에 대한 수치적 해석 (Numerical Analysis for Characteristics of Coaxial Swirl Injector in High-Pressure Environment)

  • 문윤완;설우석;김동준;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.131-134
    • /
    • 2007
  • 본 연구에서는 상압환경에 적용되었던 액막 분열 모델을 고압환경에 적용하였다. 실험에서 주위압이 고압으로 진행할수록 액막의 분열길이는 짧아지는데 개발된 액막 분열 모델은 이러한 경향을 잘 예측하는 것으로 나타났으며 분무 형상도 정성적으로 실험결과와 일치하는 것으로 나타났다.

  • PDF

기체주입 충돌제트의 분무특성에 관한 실험적 연구 (Experimental Study on the Spray Characteristics of Aerated Impinging Jets)

  • 이근석;윤영빈;안규복
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

벽면 형상에 따른 중공 원추형 분무의 벽 충돌 과정 모델링 (Modeling of Wall Impingement Process of Hollow-Cone Fuel Spray according to Wall Geometry)

  • 심영삼;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3467-3472
    • /
    • 2007
  • The effects of the wall geometry on the spray-wall impingement process of a hollow-cone fuel spray emerging from a high-pressure swirl injector of the Gasoline Direct Injection (GDI) engine were investigated by means of a numerical method. The ized Instability Sheet Atomization (LISA) & Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model for spray atomization process and the Gosman model were applied to model the atomization and wall impingement process of the spray. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental ones by the Laser Induced Exciplex Fluorescence (LIEF) technique. It was found that the radial distance of the cavity angle of 90$^{circ]$ after wall impingement was the shortest and the ring shaped vortex was generated near the wall after spray-wall impingement process.

  • PDF

액체의 물성치와 노즐의 형상 변화에 따른 압력스월 노즐의 분무 특성 (Characteristics of Spray from Pressure-Swirl Nozzle with Different Liquid Properties and Nozzle Geometries)

  • 최윤철;정지원;김덕줄
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1813-1820
    • /
    • 2001
  • The purpose of this study was to investigate the significant characteristics in atomization process of industrial etching spray fur the design or Precise pressure-swirl nozzles. The experiment was carried out with different viscosities and densities of the liquid. The macro characteristics of liquid spray, such as the spray angle and breakup process were captured by PMAS and the micro characteristics of liquid spray. such as droplet size and velocity measurements were obtained by PDA. The droplet axial and radial velocity and SMD were measured along axial and radial direction. The RMS of two velocities was measured along radial direction. It was found that the fluid with higher kinematic viscosity resulted in the larger SMD and the lower mean droplet velocity. And we could divide breakup processes into three regions that is atomization, non-dilution and dilution one in spray of pressure-swirl nozzle. The radial as well as axial velocity of droplet played an important role in the atomization process of higher kinematic viscosity fluid.