• 제목/요약/키워드: Spray Breakup

검색결과 205건 처리시간 0.022초

디젤분무의 모델에서 액적의 형상 및 수밀도의 영향에 관한 연구 (The Effects of Initial Droplet Shape and Number Density on Modeling of Non-evaporating Diesel Sprays)

  • 원영호
    • 한국분무공학회지
    • /
    • 제7권2호
    • /
    • pp.22-30
    • /
    • 2002
  • A number of droplet breakup models have been developed to predict the diesel spray. The capabilities of droplet deformation and breakup models such as TAB, ETAB, DDB and APTAB models are evaluated in modeling the non-evaporating diesel sprays injected into atmosphere. New methods are also suggested that take into account the non- spherical shape of droplets and the reduced drag force by the presence of neighbouring droplets. The KIVA calculations with standard ETAB, DDB, and APTAB models predict well the spray tip penetrations of the experiment, but overestimate the Sauter mean Diameter(SMD) of droplets. The calculation with non spherical droplets injected from the nozzle shows very similar results to the calculation with spherical droplets. The drag coefficient which is linearly increased with the time after start of injection during the breakup time gives the smaller SMD that agrees well with the experimental result.

  • PDF

전단 유동에 의한 스월 제트의 미립화 및 분무특성 향상 (The Advancement of Breakup and Spray Formation by the Swirl Spray Jets in the Low Speed Convective Flow)

  • 정재철;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.267-274
    • /
    • 2009
  • 아음속 영역의 대류에 평행하게 압력형 스월 제트를 분사시켜 액막 분열 및 액적 크기와 분포를 실험적으로 측정하였다. 대류로 인한 거시적과 미시적인 분무 특성의 영향을 제트 $We_{\iota}$수와 기상에 대한 액상의 운동량 비를 사용하여 광학적인 방법으로 측정하였다. 낮은 제트 $We_{\iota}$수일 때는 제트의 원심력 부족으로 인해 액막을 형성하지 못하고 Rayleigh 제트 분열을 하게 된다. 높은 $We_{\iota}$수에서는 거시적인 분무 특성은 대류의 영향을 거의 받지 않지만 미시적인 분무 특성은 운동량 비가 높을수록 2차 미립화 과정을 통해 대류의 영향을 많이 받았다. 대류는 제트의 분열을 촉진시키고 스월 제트의 분무 특성을 향상하는 것으로 관찰되었다.

  • PDF

혼합모델에 의한 GDI 분무예측의 비교 (Comparison of GDI Spray Prediction by Hybrid Models)

  • 강동완;황순철;김덕줄
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1744-1749
    • /
    • 2003
  • The purpose of this study is to obtain the information about the development process of GDI spray. To acquire the characteristics of GDI spray, the computational study of hollow cone spray for high-pressure swirl injectors was performed. Several hybrid models using the modified KIVA code have been introduced and compared. WB model and LISA model were used for the primary breakup, and DDB and APTAB models were used for secondary breakup. To compare with the calculated results, the experimental results such as cross-sectional images and SMD distribution were acquired by laser Mie scattering technique and Phase Doppler Analyzer respectively. The results show that LISA+APTAB hybrid model has the best prediction for spray formation process.

Experimental Analysis and Numerical Modeling Using LISA-DDB Hybrid Breakup Model of Direct Injected Gasoline Spray

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1812-1819
    • /
    • 2003
  • This paper presents the effect of injection pressure on the atomization characteristics of high-pressure injector in a direct injection gasoline engine both experimentally and numerically. The atomization characteristics such as mean droplet size, mean velocity, and velocity distribution were measured by phase Doppler particle analyzer. The spray development, spray penetration, and global spray structure were visualized using a laser sheet method. In order to investigate the atomization process in more detail, the calculations with the LISA-DDB hybrid model were performed. The results provide the effect of injection pressure on the macroscopic and microscopic behaviors such as spray development, spray penetration, mean droplet size, and mean velocity distribution. It is revealed that the accuracy of prediction is promoted by using the LISA-DDB hybrid breakup model, comparing to the original LISA model or TAB model alone. And the characteristics of the primary and secondary breakups have been investigated by numerical approach.

An Overview of Liquid Spray Modeling Formed by High-Shear Nozzle/Swirler Assembly

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.726-739
    • /
    • 2003
  • A multi-dimensioanl model is being increasingly used to predict the thermo-flow field in the gas turbine combustor. This article addresses an integrated survey of modeling of the liquid spray formation and fuel distribution in gas turbine with high-shear nozzle/swirler assembly. The processes of concern include breakup of a liquid jet injected through a hole type orifice into air stream, spray-wall interaction and spray-film interaction, breakup of liquid sheet into ligaments and droplet,5, and secondary droplet breakup. Atomization of liquid through hole nozzle is described using a liquid blobs model and hybrid model of Kelvin-Helmholtz wave and Rayleigh-Taylor wave. The high-speed viscous liquid sheet atomization on the pre-filmer is modeled by a linear stability analysis. Spray-wall interaction model and liquid film model over the wall surface are also considered.

Atomization Characteristics and Prediction Accuracy of LISA-DDB Model for Gasoline Direct Injection Spray

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1177-1186
    • /
    • 2004
  • In this paper, the spray atomization characteristics of a gasoline direct-injection injector were investigated experimentally and numerically. To visualize the developing spray process, a laser sheet method with a Nd :YAG laser was utilized. The microscopic atomization characteristics such as the droplet size and velocity distribution were also obtained by using a phase Doppler particle analyzer system at the 5 ㎫ of injection pressure. With the experiments, the calculations of spray atomization were conducted by using the KIVA code with the LISA-DDB breakup model. Based on the agreement with the experimental results, the prediction accuracy of LISA-DDB breakup model was investigated in terms of the spray shapes, spray tip penetration, SMD distribution, and axial mean velocity. The results of this study provides the macroscopic and microscopic characteristics of the spray atomization, and prediction accuracy of the LISA-DDB model.

스월 인젝터의 작동조건 및 인젝터 형상에 따른 분무특성 (The Effects of Operating Conditions and Injector Geometry on the Spray Characteristics of Swirl Injectors)

  • 김동준;임지혁;한풍규;윤영빈
    • 한국분무공학회지
    • /
    • 제9권1호
    • /
    • pp.21-29
    • /
    • 2004
  • The flow characteristics of a swirl injector were investigated with the variation of the flow condition and geometric dimensions, such as orifice length for considering the viscous effect and tangential entry port area for considering the swirl intensity. The liquid film thickness strongly influencing on the formed drop size of the spray was measured using a new technique. The film thickness measurement technique proposed here, used the attenuation of fluorescence signal near the injector exit. The breakup length that is important for the flame location as well as the spray cone angle which influences on the ignition performance was measured using a backlit stroboscopic photography technique. From the experimental results, it is found that an increase in injection pressure decreased the film thickness and breakup length, and also enlarged the spray cone angle. A decrease in orifice length and tangential entry port area has a similar tendency of thinner film thickness, shorter breakup length and larger spray cone angle. In the present study, we proposed empirical models of the flow characteristics of the swirl injectors.

  • PDF

BREAKUP LENGTH OF CONICAL EMULSION SHEET DISCHARGED BY PRESSURE-SWIRL ATOMIZER

  • Rhim, Jung-Hyun;No, Soo-Young
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.103-107
    • /
    • 2001
  • Many researches on pressure-swirl injectors due to the variety of application have been conducted on the effects of nozzle design, operating conditions, properties of liquid and ambient conditions on the flow and spray characteristics. The breakup length of conical emulsified fuel sheet resulting from pressure-swirl atomizer using in the oil burner was investigated with the digital image processing method with neat light oil and emulsion with water content of lotto% and the surfactant content of 1-3%. The injection pressure ranged from 0.1 to 1.2 MPa was selected. The various regimes for the stage of spray development within the experimental conditions selected in this study is newly suggested in terms of Ohnesorge number and injection pressure. The breakup length for both criteria show the same tendency even though the random nature of perforation and disintegration process of liquid sheet. The stage of spray development is widely different with the physical properties of liquid atomized, mainly viscosity of liquid. The breakup length decreases smoothly with increase in the injection pressure for the lower viscous liquid.

  • PDF

GDI 분무거동 해석을 위한 혼합분열모델 및 증발모델의 검증 (Validation of Hybrid Breakup Model and Vaporization Model for Analysis of GDI Spray Behavior)

  • 심영삼;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.187-194
    • /
    • 2005
  • The objective of this study is to validate the hybrid breakup model and the vaporization model for GDI spray analysis at vaporization and non-vaporization conditions. The atomization process is modeled by using hybrid breakup model that is composed of Linearized Instability Sheet Atomization (LISA) model and Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model. The vaporization process is modeled by using modified Abramzon & Sirignano model. The exciplex fluorescence method was used for comparing the calculated results with the experimental ones. The experiment and the calculation were performed at the ambient pressures of 0.1 MPa, 0.5 MPa and 1.0 MPa and the ambient temperature of 293K and 473K.

와류형 고압인젝터의 초기분무의 분열 과도현상 (Transient Breakup Phenomena of Initial Spray from High-Pressure Swirl Injector)

  • 최동석;김덕줄;고장권
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1132-1140
    • /
    • 1998
  • The disintegration process of initial spray from high-pressure swirl injector was investigated at different injection pressures. The transient breakup phenomena that were difficult to observe at high injection pressure were easily observed at the low injection pressure of 0.4MPa. The effect of fuel remained inside a nozzle hole volume on the penetration of initial spray was also investigated. The disintegration process of initial spray could be classified four regions: the formation of mushroom shape, the first collision, the second collision, and the development of spray, The liquid film of cup shape was particularly found in the second collision region, and the growth ratio of its length and width at low and high injection pressures were compared.