• Title/Summary/Keyword: Spot load

Search Result 216, Processing Time 0.027 seconds

Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds (비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가)

  • Choi, Chul-Young;Kim, Jun-Ki;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Yeong-Do
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

A New Traffic Load Shedding Scheme in Microcellular CDMA with Uniform and Non-uniform Traffic Load

  • Park, Woo-Goo;Rhee, Ja-Gan;Lee, Hu;Lee, Sang-Ho
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.33-39
    • /
    • 1997
  • In this paper we proposed a new traffic load shedding scheme which maximizes the throughput of traffic control by decreasing the load of the hot-spot cell using minimum load cell selection (MLCS) algorithm and deployed control flow of calls to define characteristic for hadoff region. we compared the performance of the random shedding approach with that of the proposed algorithm. The results of simulation show that MLCS algorithm minimizes the cal blocking rate under a high-density traffic compared to the random shedding scheme.

  • PDF

Real-time PCR Quantification of White Spot Syndrome Virus (WSSV) and Hepatopancreatic Parvovirus (HPV) Loads in Shrimp and Seawaters of Shrimp Ponds on the West Coast of South Korea

  • Jang, In-Kwon;Gopalakannan, Ayyaru;Suriakala, Kannan;Kim, Jong-Sheek;Kim, Bong-Rae;Cho, Yeong-Rok;Meng, Xian-Hong;Seo, Hyeong-Chul
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.195-204
    • /
    • 2008
  • Viral diseases are major emerging problems of shrimp that have affected the production, and even complete losses for shrimp farms. In this study, we developed a sensitive TaqMan real-time PCR method to quantify white spot syndrome virus (WSSV) and hepatopancreatic parvovirus (HPV) in the shrimp and pond water in which fleshy shrimp, Fenneropenaeus chinensis, and Pacific white shrimp, Litopenaeus vannamei, are reared. WSSV and HPV in pond seawaters ranged from $1.65{\times}10^3$ to $2.43{\times}10^9$ and from 0 to $4.43{\times}10^5$ copies/L of seawater, respectively. Of 20 ponds analyzed, all pond water and shrimp were positive for WSSv. L. vannamei showed higher susceptibility to WSSV than F chinensis. HPV was detected only in the pond water for F chinensis. In shrimp tissue, however, HPV was found in both species, with 23-times higher infection rate in F chinensis than L. vannamei. The total bacterial counts in the pond water ranged from $2.23{\times}l0^3$ to $1.98{\times}l0^5\;CFU/mL$. The variations in total bacterial count for each pond appeared to correlate to the variations of the WSSV load. Statistical analysis indicated that there was no significant difference (P>0.05) between the WSSV load in pond water and shrimp, and there was no relationship between total bacterial load and viral load in the pond water. However, a significant difference (P<0.01) was found between HPV load and L. vannamei and F chinensis pond water.

An Efficient Load Balancing Mechanism in Distributed Virtual Environments

  • Jang, Su-Min;Yoo, Jae-Soo
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.618-620
    • /
    • 2008
  • A distributed virtual environment (DVE) allows multiple geographically distributed objects to interact concurrently in a shared virtual space. Most DVE applications use a non-replicated server architecture, which dynamically partitions a virtual space. An important issue in this system is effective scalability as the number of users increases. However, it is hard to provide suitable load balancing because of the unpredictable movements of users and hot-spot locations. Therefore, we propose a mechanism for sharing roles and separating service regions. The proposed mechanism reduces unnecessary partitions of short duration and supports efficient load balancing.

  • PDF

A Study on the Safety Diagnosis for Electric Power Systems Using Thermal Imaging Analysis (열화상 분석을 이용한 전력시스템의 안전진단에 관한 연구)

  • Yu, Byeong-Yeol;Kim, Chan-O
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper, the safety diagnosis using thermal image analysis is described for power equipments. The conventional three-phase comparison method has only provided the results of thermal comparison for the equipments. The proposed method defines the conditions of poor connection by visual checks, and supports the criteria with each thermal rise step. As a result, the thermal difference from $5^{\circ}C$ to $10^{\circ}C$ meant the warning state. In addition, the thermal difference more than $10^{\circ}C$ meant that the connection status was unbalanced. In this case, the countermeasure might be the internal load distribution. If the thermal difference more than $20^{\circ}C$ is observed, it means a hot spot at the poor connection. If the hot spot is observed all over the surface, its cause was the unbalanced load, which made the conductive parts discolored and raised the possibility of oxidization or $Cu_2O$ generation. This diagnostic technology employing thermal image analysis method can be directly applied in the field and ensures the safety of equipments.

A Study of Assessment for Fatigue Strength of EH Steels at Fillet Welded Joints using 1mm Stress Method (1mm 응력 기법을 적용한 EH 강재 필릿 용접 이음부 피로 강도 평가)

  • Xin, Wen-Jie;Oh, Dong-Jin;Kim, Young-Nam;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • In this study, Non-load-carrying EH Grade steels in fillet welded joints were evaluated with both the hot spot stress method and the 1mm stress method. The thickness effect criterion for fatigue strength evaluation of welded of welded steel structures recommendations of the IIW was used to evaluate the fatigue strength of EH40 and EH36 and Both EH40 and EH36 have been compared with FAT 125 curve recommended in the IIW. Furthermore, fatigue strength of the welded tow and the ground conditions for Non-load-carrying EH36 based on the 1mm stress method has been discussed.

Effect of Tool Shape and Insertion Depth on Joining Properties in Friction Stir Spot Welding of Aluminum Alloy/high-strength Steel Sheets (알루미늄 합금/고장력 강판 겹치기 마찰교반점용접에서 공구 형상과 삽입 깊이에 따른 접합 특성)

  • Su-Ho An;Young-Keun Jeong
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2024
  • Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.

A comparative study of constant current control and adaptive control on electrode life time for resistance spot welding of galvanized steels (용융아연도금 강판 저항 점 용접 시 정전류 및 적응제어 적용에 따른 연속타점 특성 평가 및 고찰)

  • Seo, Jeong-Chul;Choi, Il-Dong;Son, Hong-Rea;Ji, Changwook;Kim, Chiho;Suh, Sung-Bu;Seo, Jinseok;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.47-55
    • /
    • 2015
  • With using adaptive control of the resistance spot welding machine, the advantage on electrode life time for galvanized steels has been addressed. This study was aimed to evaluate the electrode life time of galvanized steels with applying the constant current control and the adaptive control resistance spot welding process for a comparison purpose. The growth in diameter of electrode face was similar for both the constant current and the adaptive control up to 2000 welds. The button diameter was decreased with weld numbers, however, sudden increase in button diameter with use of the adaptive control after 1500 welds was observed. The peak load was continuously decreased with increasing number of welds for both the constant current and the adaptive control. The current compensation during a weld was observed with using the adaptive control after 1800 welds since the ${\beta}$-peak on dynamic resistance curve was detected at later weld time. The current compensation with adaptive control during resistance spot welding enhanced the nugget diameter at the faying interface of steel sheets and improved the penetration to thinner steel sheet.

Characterization of Partial Interfacial Fracture on Resistance Spot-Welded TRIP Steels for Automotive Applications (자동차 차체용 TRIP강판의 저항 점용접부 Partial Interfacial Fracture 특성에 관한 연구)

  • Choi, Chul Young;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.136-145
    • /
    • 2012
  • Resistance spot welding of TRIP780 steels was investigated to enhance understanding of weld fracture mode after tensile shear testing (TST) and L-shape tensile testing (LTT). The main failure mode for spot welds of TRIP780 steels was partial interfacial fracture (PIF). Although PIF does not satisfy the minimum button diameter (4${\surd}$t) for acceptable welds, it shows enough load carrying capacity of resistance spot welds for advanced high strength steels. In the analysis of displacement controlled L-shape tensile test results, cracks initiated at the notch of the faying surface and propagated through the interface of weldments, and finally, cracks change path into the sheet thickness direction. Use of the ductility ratio and CE analysis suggested that the occurrence of PIF is closely related to high hardness and brittle welds, which are caused by fast cooling rates and high chemical compositions of TRIP steels. Analysis of the hold time and weld time in a welding schedule demonstrated that careful control of the cooling rate and the size of a weld nugget and the HAZ zone can reduce the occurrence of PIF, which leads to sound welds with button fractures (BFs).