• 제목/요약/키워드: Spot Welded

Search Result 267, Processing Time 0.025 seconds

Fatigue Life Prediction of Non-Load-Carrying Cruciform Welded Joint using Master S-N Curve based on Structural Stress Approach (구조응력기반 마스터 피로 선도를 이용한 하중 비전달형 십자 필렛 용접조인트의 피로예측)

  • Kwak, Si-Young
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.49-54
    • /
    • 2015
  • Welding process is of importance to assemble products or structures, but also the process is structural weakness due to stress concentration in welding joint. The fatigue design of welded joint requires time & labor consuming fatigue test because the fatigue life is various according to the depth of joint, joint type and load type etc. In fatigue design codes, they guide to classify welding joints with their shape( BS7608, IIW Documents) and provide fatigue assessment information. In terms of numerical method for fatigue analysis, it is also difficult to decide the stress peak in joint because of mesh sensitivity which means that stress value is varies with element type or size on stress concentration zone. Hot-spot method is used generally, but Battelle of United States proposed Master S-N Curve based on structural stresses converted by mechanical equilibrium theory. In this research, we extracted master S-N curve from Battelle's fatigue test DB including test data of various welding joints to apply on Non-Load-Carrying cruciform Joint. Comparing fatigue results between the case of using normal stress and case of structural stress cor the cruciform Joint, The suggested Battelle method showed successive results.

Data analysis for fatigue test of welded joint using structural stress (Structural stree를 이용한 피로실험 data 분석)

  • Park, Hyeong-Jin;Kim, Yu-Il;Gang, Jung-Gyu;Heo, Ju-Ho
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.82-84
    • /
    • 2005
  • Fatigue assessment of welded structure is very sensitive to the method of local stress determination. Normally, hot spot stress which is surface stress extracted from 0.5t, 1.5t away from weld toe is widely used to obtain local stress. However, this method has a lot of limitation in the evaluation of fatigue strength. Therefore, mesh has to comply with strict requirements since stress extracted from this method strongly rely on mesh size and element types. And that method does not cover the stress gradient through thickness direction since only surface stress is considered. Recently, new method to obtain local stress is proposed, which is structural stress. This method has an advantage, which is mesh intransitiveness and covering the effect of both bending and axial stress in local area. In this paper, fatigue test data for various welded joints was analyzed to review the reliability of structural stress. As a result, it is verified that S-N curve using structural stress guaranteed single master curve for various joint type and testing condition.

  • PDF

A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure(I) (선체 용접부의 균열진전 및 피로수명 예측에 관한 연구(I))

  • Kim, Kyung-Su;Ito, Hisashi;Seo, Yong-Seok;Jang, Beam-Sean;Kim, Beam-Il;Kwan, Young-Bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.669-678
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of initiation and propagation stages. In this study, crack growth test is carried out on large scale structure test specimens and fracture mechanical analysis is performed. The fatigue lives measured from fatigue tests are compared with DNV, Matsuoka and BS 5400 S-N curve. And to predict the crack initiation life, S-N curve, corresponding to crack length 20mm at welded joint, is developed based on hot spot stress range. Also crack propagation life is calculated using crack growth equation. Consequently, computed crack propagation life is compared with experiment results.

$CO_2$ Laser Beam Welding and Formability of Steel Plates with Different Thicknesses (이종두께 강판의 $CO_2$ 레이저 용접 및 성형성)

  • Suh, J.;Han, Y.H.;Kim, J.O.;Lee, Y.S.
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.82-91
    • /
    • 1996
  • The maximum butt-joint gap size in $CO_2$ laser beam welding of SAPH steel plates with different thicknesses and its bending formability were studied. In the range of the gap size$\geq$0.1mm, the optimal butt welding speed was faster than that of no gap (air gap) condition. This behaviour was independent on the difference of thickness at any combination. Also, the allowable gap size in steel plates with different thicknesses was larger than with same thicknesses. In the range of $T/T_0$(bead shape) $\geq$ 0.8, good bending formability was obtained at any combination of thickness. The formability was improved by reducing the hardness in weld bead using pre-heating process. Finally, FEM result of the laser beam welded underframe with different thicknesses was compared to that of the conventional spot welded underframe.

  • PDF

Fatigue Life Prediction of Vessel Engine Frame Box by Utilizing Finite Element Analysis (유한요소해석을 활용한 선박용 엔진 프레임 박스의 피로수명의 예측)

  • Lee, Jae-Hoon;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.768-773
    • /
    • 2007
  • This paper presents the numerical estimation of the fatigue life for the welded parts of the engine frame box of the S60MC-C vessel engine. The time-variations of the effective stresses at the critical points during a piston cycle are computed through the finite element analysis, by applying the dynamic loadings that were analytically derived by the kinematic analysis. The fatigue life of the welded parts is estimated by making use of the hot-spot stress extrapolation and the Palmgrem-Minor cumulative damage rule.

  • PDF

Consideration for a Proper Stress Definition in Fatigue Analysis of Welded Structures

  • Kim, Myung-Hyun;Kang, Sung-Won
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.396-398
    • /
    • 2005
  • At present, fatigue design of welded structures is primarily based on nominal stress or hot spot stress approach with a series of classified weld S-N curves. However, these methods are known to possess drawbacks, such as difficulty associated with defining proper nominal stress and the finite element sue sensitivity etc. Recently, a mesh-size insensitive structural stress definition is proposed by Battelle that gives a stress state at weld toe with relatively large mesh size. The structural stress definition is based on the elementary structural mechanics theory and provides an effective measure of a stress state in front of weld toe. As an experimental validation of the structural stress method in obtaining the fatigue strength of weldments, a series of experiment is carried out for various sizes of weldments. Based on the result from this study, it is expected to develop a more precise fatigue strength evaluation technique and to save time period required in the fatigue design of ship and offshore structures.

  • PDF

Internal Defection Evaluation of Spot Weld Part and Carbon Composite using the Non-contact Air-coupled Ultrasonic Transducer Method (비접촉 초음파 탐상기법을 이용한 스폿용접부 및 탄소복합체의 내부 결함평가)

  • Kwak, Nam-Su;Lee, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6432-6439
    • /
    • 2014
  • The NAUT (Non-contact Air coupled Ultrasonic Testing) technique is one of the ultrasonic testing methods that enables non-contact ultrasonic testing by compensating for the energy loss caused by the difference in acoustic impedance of air with an ultrasonic pulser receiver, PRE-AMP and high-sensitivity transducer. As the NAUT is performed in a state of steady ultrasonic transmission and reception, testing can be performed on materials of high or low temperatures or specimens with a rough surface or narrow part, which could not have been tested using the conventional contact-type testing technique. For this study, the internal defects of spot weld, which are often applied to auto parts, and CFRP parts, were tested to determine if it is practical to make the NAUT technique commercial. As the spot welded part had a high ultrasonic transmissivity, the result was shown as red. On the other hand, the part with an internal defect had a layer of air and low transmissivity, which was shown as blue. In addition, depending on the PRF (Pulse Repetition Frequency), an important factor that determines the measurement speed, the color sharpness showed differences. With the images obtained from CFRP specimens or an imaging device, it was possible to identify the shape, size and position of the internal defect within a short period of time. In this paper, it was confirmed in the above-described experiment that both internal defect detection and image processing of the defect could be possible using the NAUT technique. Moreover, it was possible to apply NAUT to the detection of internal defects in the spot welded parts or in CFRP parts, and commercialize its practical application to various fields.

Corrosion-Resistant High Strength S20C Element Riveted Al5052-SPFC980Y Steel Joints by Resistance Element Spot Welding (S20C 리벳된 Al5052와 SPFC980Y 강철 resistance-element 점용접 접합부의 미세조직 발달 및 고강도-부식 저항 특성)

  • Baek, Seung-Yeop;Song, Jong-Ho;Park, Seung-Youn;Song, Il-Jong;Lee, Hyun-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.794-801
    • /
    • 2021
  • This study examined the mechanical strength and corrosion resistance of a dissimilar joint with an aluminum alloy and steel by resistance element spot welding. SPFC980 steels and Al5052 alloys were applied as the base materials. S20C steels were assembled on Al5052 for the riveting element before the electric resistance welding process. The SPFC980-S20C riveted Al5052 was welded at a 6.5 kA current and 250 kgf/㎠. As a result, the engraved S20C elements formed unstable nuggets after the spot welding processes. In contrast, in the embossed S20C elements, exceptional mechanical properties, such as robust corrosion resistance and fatigue resistance, were obtained by structurally sound joints. The correlation between the microstructure and mechanical properties were examined by microstructural investigations and FEM simulations. The corrosion reliability of element spot-welded SPFC980-Al5052 dissimilar joints was investigated systematically.

Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds (비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가)

  • Choi, Chul-Young;Kim, Jun-Ki;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Yeong-Do
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

Development of Spot Welding and Arc Welding Dual Purpose Robot Automation System (점용접 및 아크용접 겸용 로봇 자동화시스템 개발)

  • Lee, Yong-Joong;Kim, Tae-Won;Lee, Hyung-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.73-80
    • /
    • 2004
  • A dual purpose robot automation system is developed for both arc welding and spot welding by one robot within a cell. The need for automation of both arc welding and spot welding processes is urgent while the production volume is not so big as to accommodate separate station for the two processes. Also, space is too narrow for separate station to be settled down in the factory. A spot welding robot is chosen and the function for arc welding are implemented in-house at cost of advanced functions. For the spot welding, a single pole type gun is used and the robot has to push down the plate to be welded, which causes the robot positioning error. Therefore, position error compensation algorithm is developed. The basic functions for the arc welding processes are implemented using the digital I/O board of robot controller, PLC, and A/D conversion PCB. The weaving pattern is taught in meticulously by manual teach. A fixture unit is also developed for dual purpose. The main aspects of the system is presented in this paper especially in the design and implementation procedure. The signal diagrams and sequence logic diagrams are also included. The outcome of the dual purpose welding cell is the increased productivity and good production stability which is indispensable for production volume prediction. Also, it leads to reduction of manufacturing lead time.

  • PDF