• Title/Summary/Keyword: Spot Welded

Search Result 267, Processing Time 0.025 seconds

An Estimative Model of Spot Weld Failure-1. Failure Criteria (점 용접점 파단의 정량적 모델-1. 파단조건식)

  • Lee, T.S.;Lee, H.Y.;Shin, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.40-52
    • /
    • 1998
  • A good grasp of the failure mechanisms of resistance spot weld, widely used in joining the auto-panels, in essential to the structural/crashworthy analyses and integrity assessment of the whole auto-body. In this study, We provide an estimative model describing the failure behavior of resistance spotf weld, and apply the model to the finite element analysis of crashworthiness. First, in "Part 1-Failure Criteria", to be used for the finite element analysis of spot-welded structural panels of an auto-body, (i) a methodology for quantifying the spot weld failure and the accompanying failure criteria are presented, and (ii) the coefficients of the failure equation are determined by a munimum number of appropriate experimental tests. To achieve these, we derive the functional form of the failure envelop by limit analysis, and correlate it with the form in PAM-$CRASH^{TM}$ code, and also investigate the effect of the failure coefficients on the failure envelop form. An estimative model obtained in this Part1, as spot weld failure criteria is applied to the Macroscopic finite element analysis of autobody structural panels using PAM-$CRASH^{TM}$ code in Part 2.

  • PDF

Corrosion Assessment of Al/Fe Dissimilar Metal Joint (Al/Fe 이종금속 접합부의 부식특성)

  • Kang, Minjung;Kim, Cheolhee;Kim, Junki;Kim, Dongcheol;Kim, Jonghoon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

An Experimental Study on the Axial Collapse Characteristics of Hat and Double Hat Shaped Section Members at Various Velocities

  • Cha, Cheon-Seok;Chung, Jin-Oh;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.924-932
    • /
    • 2004
  • In this study, the axial collapse tests were performed under either static (or quasi-static) or impact loads with several collapse velocities based on the expectation that para-closed sections of the front-end side members (spot welded hat and double hat shaped section members) would show quite different collapse characteristics from those for seamless section. The test results showed that both of the hat and double hat shaped section members failed in the stable sequential collapse mode in the static or quasi-static collapse tests, while the double hat shaped section members underwent the unstable collapse mode especially when the impact velocity is high. The mean collapse loads in the hat shaped section members increase with collapse velocity for all the cases of the static, quasi-static, and impact collapse tests. In the double hat shaped section members, however, the mean collapse loads decrease with increase in collapse velocity in the impact tests.

Plastic mechanism analysis of vehicle roof frames consisting of spot-welded steel hat sections

  • Bambach, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1085-1098
    • /
    • 2014
  • Plastic mechanism analysis of structures subjected to large deformation has long been used in order to determine collapse mechanisms of steel structures, and the energy absorbed in plastic deformation during such collapses. In this paper the technique is applied to vehicle roof structures that undergo large plastic deformation as a result of rollover crashes. The components of such roof structures are typically steel spot-welded hat-type sections. Ten different deformation mechanisms are defined from investigations of real-world rollover crashes, and an analytical technique to determine the plastic collapse load and energy absorption of such mechanisms is determined. The procedure is presented in a generic manner, such that it may be applied to any vehicle structure undergoing a rollover induced collapse. The procedure is applied to an exemplar vehicle, in order to demonstrate its application in determining the energy absorbed in the deformation of the identified collapse mechanisms. The procedure will be useful to forensic crash reconstructionists, in order to accurately determine the initial travel velocity of a vehicle that has undergone a rollover and for which the post-crash vehicle deformation is known. It may also be used to perform analytical studies of the collapse resistance of vehicle roof structures for optimisation purposes, which is also demonstrated with an analysis of the effect of varying the geometric and material properties of the roof structure components of the exemplar vehicle.

Fatigue Analysis of Welding Bogie Frames for Rolling Stocks Using The equilibrium-equivalent structural stress method (등가구조응력법을 이용한 철도차량 용접대차프레임의 피로해석)

  • Kim, Chul-Su;Ahn, Seung-Ho;Chung, Kwang-Woo;Cheon, Young-Suk;Park, Choon-Soo;Kim, Sang-Su;Jang, Cheon-Su
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1243-1248
    • /
    • 2010
  • Fatigue design and evaluation of welded joints are typically carried out by weld classification approach in which a family (theoretically infinite) of parallel nominal stress based S-N curves are used according to joint types and loading modes as well as extrapolation-based hot spot stress. Traditional finite element methods are not capable of consistently capturing the stress concentration effects on fatigue behavior due to their mesh-sensitivity in stress determination at welds resulted from notch stress singularity. The extrapolated hot spot stresses tend vary, depending on the element sizes, types, joint types, and loading mode. however, the equilibrium-equivalent structural stress method(E2S2) has been recently developed through several joint industry projects as a robust method to analyze welded components using finite element analysis. This method has been proven effective in correlating a large amount of published fatigue test results in the literature such as master S-N curve and has used for evaluating the fatigue life of welding components. In this study, fatigue analysis of the welding bogie frame is examined using E2S2 method with master S-N curve.

  • PDF

Finite Element Analysis of the Shear Buckling Load with Respect to the Aspect Ratio and Number of Spots of two Rectangular Plates Spot-welded (점용접된 두 사각평판의 형상비 및 용접점수에 대한 전단좌굴하중의 유한요소해석)

  • 한근조;전형용;이현철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.173-181
    • /
    • 2000
  • The stability of a structural plate is a crucial problem which causes wrinkling and buckling. In this paper, the effect of the pattern of spot-welding points in the two rectangular plate on the shear buckling load is studied with respect to the thickness, the aspect ratio of plates, the number of welding spots. Buckling coefficient of the simple plate was compared with that of two plates with various conditions to extract the effect of buckling strength. The effect of the number of welding spots are studied in two directions, longitudinal and transverse directions. The concluded that the reinforcement effect was maximized when the aspect ratio was close to 1.5 and that the effect of number of welding spots in longitudinal direction was larger than that in transverse direction.

  • PDF

Fatigue Strength and Fracture Behaviour of CHS-to-RHS T-Joints Subjected to Out-of-Plane Bending

  • Bian, Li-Chun;Lim, Jae-Kyoo;Kim, Yon-Jig
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2003
  • The fatigue behaviour of six different hollow section T-joints subjected to out-of-plane bending moment was investigated experimentally using scaled steel models. The joints had circular brace members and rectangular chord members. Hot spot stresses and the stress concentration factors. (SCFs) were determined experimentally. Fatigue testing was carried out under constant amplitude loading in air. The test results have been statistically evaluated, and show that the experimental SCF values for circular-to-rectangular (CHS-to-RHS) hollow section joints were found to be below those of circular-to-circular (CHS-to-CHS) hollow section joints. The fatigue strength, referred to experimental hot spot stress, was in reasonably good agreement with referred fatigue design codes for tubular joints.

A Study on the Collapse Characteristics of Hat-shaped Members with Spot Welding under Axial Compression(II) (모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(II))

  • 차천석;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.195-201
    • /
    • 2000
  • The fundamental spot welded sections of automobiles (hat-shaped and double hat-shaped sections) absorb most of the energy in a front impact collision. The sections of various thickness, shape and weld width on the flange lave been tested on axial impact crush load (Mass 40kg, Velocity 7.19m/sec) using a vertical air pressure crash est device Characteristics of impact collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

  • PDF