• Title/Summary/Keyword: Spot Size

Search Result 547, Processing Time 0.024 seconds

Distribution of X-ray Strength in Exposure Field Caused by Heel Effect (양극의 경사각 효과에 따른 조사야 X-선 강도 분포)

  • Jang, Keun-Jo;Kim, Nam-Hun;Lee, Jun-Haeng;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.223-229
    • /
    • 2011
  • When negative electron in x-ray tube is accelerated in to a high speed and then the currency of the electron is blocked by the target, x-ray happens by the conversion of the energy. The real area where the fast accelerated electron collides to a target area is called actual focal spot. When the string focused size is observed at the central ray side, where the direction x-ray comes out, the size seems to be reduced. This focus is called effective focal spot. According to radiation angle of x-rays tube, the degree of the negative pole side presents higher value than inclination, the amount of exposed radiation that patient receives differs by the angle of positive pole, which means effective focal spot is the variable. This paper presents the correlation between size of effective focal spot and amount of exposed radiation to the patient by it, and effective research for homogenized dose dispersion by the size of effective focal spot. In conclusion, following the focal size, effective range which was -8cm ~ 0 cm on average, was found and average dose rate was 0.019 R/min. Through this range, for patients with small radiation exposure, image with good density and resolution in aspect of diagnosing will be able to be obtained.

A Study on the Evaluation of Weldability in Spot Welding (저항용접에서의 용접성 평가에 관한 연구)

  • 홍민성;김종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.301-306
    • /
    • 2003
  • Spot welding is frequently used for industrial purpose, such as automobile and aerospace industries and household appliances due to its high performance. In these day, robotization and systemization of welding process made it possible to produce more precise or smaller electric parts. And when it comes to welding of steel sheet, the size of nugget must be getting smaller. Therefore, welding conditions are limited to avoid defects, such as deformation, damage, weakening of joining area. In this research, the measurement of the nugget size by the nondestructive inspection has been conducted. As a result, the right estimation of the nugget size and void defects, the detection of corona bond near joining area, the selection of the optimum ultrasonic mode, and set up for ultrasonic inspection are studied. From the trustworthy solutions of nugget size estimated by results of measurement, the optimum inspection conditions depending upon the width of welding parts are determined as well.

  • PDF

Effect of some welding parameters on nugget size in electrical resistance spot welding

  • Savas, Omer
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.345-355
    • /
    • 2015
  • In this study, the effects of weld parameters on nugget size and tensile-shear strength of welding joint in electrical resistance spot welding of galvanized DP 600 steel sheets having 1.2 mm were investigated. Taguchi design method has been employed to examine the effects of five parameters of welding current, electrode pressure, welding time, clamping time and holding time by using the $L_{27}(5^3)$ orthogonal array. Results showed that the most effective parameters on tensile shear strength and the nugget size ratio (hn/dn) were found as welding current and welding time, whereas electrode pressure, clamping time and holding time were less effective factors. Max. 545 MPa strength was obtained through proposed optimum conditions by Taguchi technique.

Estimation of Nugget Size in Resistance Spot Welding Processes Using Artificial Neural Networks (저항 점용접에서 인공신경회로망을 이용한 용융부 추정에 관한 연구)

  • 최용범;장희석;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.393-406
    • /
    • 1993
  • In resistance spot welding process, size of molten nuggest have been utilized to assess the integrity of the weld quality. However real-time monitoring of the nugget size is an extremely difficult problem. This paper describes the design of an artificial neural networks(ANN) estimator to predict the nugget size for on-line use of weld quality monitoring. The main task of the ANN estimator is to realize the mapping characteristics from the sampled dynamic resistance signal to the actual negget size through training. The structure of the ANN estimator including the number of hidden layers and nodes in a layer is determined by an estimation error analysis. A series of welding experiments are performed to assess the performance of the ANN estimator. The results are quite promissing in that real-time estimation of the invisible nugget size can be achieved by analyzing the dynamic resistance signal without any conventional destructive testing of welds.

A Study on Optimum kVp in Four Spot Films of Stomach Examinations (위(胃) 사등분할촬영시(四等分割撮影時) 적정(適正)한 관전압(管電壓)에 관(關)한 검토(檢討))

  • Kim, Wha-Gon;Kyong, Kwang-Hyon;Kim, Young-Hwan;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.3 no.1
    • /
    • pp.37-41
    • /
    • 1980
  • In an attempt to provide optimum kVp for four spot films of stomach examinations, we measured experimentally film density and scatter radiation with field size. And to investigate the effect of concentrations in barium sulphite and kVp in spot films of stomach fluoroscopy were carried out and the following results were obained. 1. The entire density of film by field size has the sharpest increase from $10cm^2$ to $100cm^2$, and relatively flattened curve beyond $500cm^2$ in field size. 2. The quantity of scatter radiation reaching an X-ray film depends upon field size: the larger the fields, the more scatter radiation. 3. It is necessary for increasing 3 to 5kVp as for the absence of barium sulphite and 5 to 7 kVp in the case of 20 per cent and 25 per cent in barium sulphite concentrations to produce uniform density in the four spot films for stomach fluoroscopy.

  • PDF

An Experimental Study of fatigue Strength of Welded Structures Using Structural Stress and Hot Spot Stress (구조응력 및 핫스팟응력을 이용한 피로수명 평가에 관한 실험적 연구)

  • Kang, Sung-Won;Kim, Myung-Hyn;Kim, Seok-Hun;Ha, Woo-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.129-135
    • /
    • 2005
  • At present, fatigue design of welded structures is primarily based on a nominal stress or hot spot stress approach with a series of classified weld S-N curves. Although well accepted by major industries, the nominal stress based fatigue design approach is cumbersome in terms of securing a series of S-N curves corresponding to each class of joint types and loading modes. The hot spot stress based fatigue design has a difficulty of finding a proper stress through the global model, the midium size model, and the detail model of ship structure. Also, it is difficult to link proper displacements within three different mesh size models. Recently, the structural stress is proposed as a mesh-size insensitive structural stress definition that gives a stress state at weld toe with relatively large mesh size. However, this method requires an experimental validation in obtaining the fatigue strength of weldments. Therefore, in this study, a series of experiment is performed for various sizes of weldments.

Effective Detective Quantum Efficiency (eDQE) Evaluation for the Influence of Focal Spot Size and Magnification on the Digital Radiography System (X-선관 초점 크기와 확대도에 따른 디지털 일반촬영 시스템의 유효검출양자효율 평가)

  • Kim, Ye-Seul;Park, Hye-Suk;Park, Su-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The magnification technique has recently become popular in bone radiography, mammography and other diagnostic examination. However, because of the finite size of X-ray focal spot, the magnification influences various imaging properties with resolution, noise and contrast. The purpose of study is to investigate the influence of magnification and focal spot size on digital imaging system using eDQE (effective detective quantum efficiency). Effective DQE is a metric reflecting overall system response including focal spot blur, magnification, scatter and grid response. The adult chest phantom employed in the Food and Drug Administration (FDA) was used to derive eDQE from eMTF (effective modulation transfer function), eNPS (effective noise power spectrum), scatter fraction and transmission fraction. According to results, spatial frequencies that eMTF is 10% with the magnification factor of 1.2, 1.4, 1.6, 1.8 and 2.0 are 2.76, 2.21, 1.78, 1.49 and 1.26 lp/mm respectively using small focal spot. The spatial frequencies that eMTF is 10% with the magnification factor of 1.2, 1.4, 1.6, 1.8 and 2.0 are 2.21, 1.66, 1.25, 0.93 and 0.73 lp/mm respectively using large focal spot. The eMTFs and eDQEs decreases with increasing magnification factor. Although there are no significant differences with focal spot size on eDQE (0), the eDQEs drops more sharply with large focal spot than small focal spot. The magnification imaging can enlarge the small size lesion and improve the contrast due to decrease of effective noise and scatter with air-gap effect. The enlargement of the image size can be helpful for visual detection of small image. However, focal spot blurring caused by finite size of focal spot shows more significant impact on spatial resolution than the improvement of other metrics resulted by magnification effect. Based on these results, appropriate magnification factor and focal spot size should be established to perform magnification imaging with digital radiography system.

The Radiation Spot Size due to Wiggler Errors in a Free-Electron Laser Oscillator

  • Nam, Soon-Kwon;Park, Y.S.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1495-1501
    • /
    • 2018
  • We have developed an extended three-dimensional free-electron laser (3D FEL) code with source-dependent expansion to calculate the intensity of the radiation field and the spot size in a free-electron laser oscillator. The effect of the wiggler field errors was evaluated for the case of a planar wiggler generated by a magnet stack with parabolic shaped pole faces by using the extended three-dimensional equations in a free-electron laser oscillator based on the proposed FEL facility which is to be operated in the far-infrared and the infrared regions. The radiation spot size due to the wiggler field errors also have been analyzed for wiggler errors of ${\Delta}B/B=0.0$, 0.03, 0.06 and 0.09% at z = 1 m and z = 2 m. The effect of the diffraction of radiation field due to the wiggler field errors of ${\Delta}B/B=0.0$ and ${\Delta}B/B=0.09%$ at 200 passes was evaluated by using the extended 3D code that we developed. The variation of the curvature of the phase front and the effect of the radiation field intensity due to the wiggler field errors were also evaluated for B = 0.5 T and B = 0.7 T with the wiggler error of ${\Delta}B/B=0.09%$ at 200 passes and the results were compared to those of without errors. The intensity of the radiation, behavior of the radiation spot size and the variation of the curvature of the phase were highly sensitive to the wiggler error of ${\Delta}B/B$ > 0.09%, but were less sensitive to the wiggler errors for ${\Delta}B/B$ < 0.09% in a free-electron laser (FEL) oscillator based on the proposed FEL facility.

The Effects of Welding Clearance and bending moment on Spot Weldability (점용접 간극과 굽힘 모멘트가 용접성에 미치는 영향)

  • Lim, Jae-Kyoo;Song, Jun-Hee;Kuk, Jung-Ha;Yang, Seung-Hyon
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.55-60
    • /
    • 2001
  • The automobile is made up of thousands of parts. Some parts are formed by pressing and combined by spot welding. To find weldability conditions of spot welding, clearance between two welding plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a steel plate of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two specimens was changed 0mm, 3mm and 5mm and distance from vise to measure influence of bending moment 25mm, 45mm, 65mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear. The much bending moment and crosshead speed are the much tensile shear load is.

  • PDF

Image quality assessments of focal spot size on radiographic images in dogs

  • Park, Sujin;Hwang, Tae Sung;Lee, Hee Chun
    • Korean Journal of Veterinary Research
    • /
    • v.62 no.1
    • /
    • pp.8.1-8.6
    • /
    • 2022
  • The aim of this prospective study was to investigate the effects of focal spot size of X-ray tube on sharpness of clinical radiographic images of dogs and cats. Radiographic images of 24 stifle joints, 15 carpi, 18 lumbar spines, 61 thoraxes, and 47 abdomens of 102 dogs and 4 cats were obtained in the present study, using 2 X-ray tubes with nominal focal spots of 2.0 mm and 0.6 mm, respectively. The sharpness of specific anatomical structures in all the images of 5 projections was assessed. The radiographic sharpness of various anatomical structures of lumbar spine and cortex of stifle with fine focal spot was increased significantly compared with broad focal spot images. In addition, the blurred motion was significantly higher in the fine focal spot images of thorax. In conclusion, our study suggests that a selective use of fine foci for imaging of lumbar spine or cortex of stifle enhanced radiographic sharpness.