• 제목/요약/키워드: Sport Shoes

검색결과 114건 처리시간 0.019초

Qualitative Analysis of Pressure Intensity and Center of Pressure Trajectory According to Shoe Type

  • Yi, Kyung-Ock
    • 한국운동역학회지
    • /
    • 제22권3호
    • /
    • pp.261-268
    • /
    • 2012
  • The purpose of this study was to qualitatively analyze pressure intensity and the center of pressure(COP) trajectory according to shoe type. Subjects were ten first-year female university students. The EMED-AT 25/D(Novel, Germany) was used to measure pressure intensity and COP trajectory. The COP Excursion Index(CPEI) was used for within subject test design. Independent variables were bare feet and six types of shoes. Dependent variables were center of pressure trajectory and pressure intensity. Barefeet and five toed shoes had a similar pressure intensity and COP trajectory. COP trajectory for all other shoe types showed a medial wobble at the heel. Pressure intensity for all other shoe types was related to the structure of the shoes. In conclusion, different shoe types can not only affect gait, but they can also influence foot deformities, pain, and dysfunction.

발레의 1st Position 점프 동작 시 신발 유형에 따른 하지의 운동학적 비교분석 (A Comparison analysis of kinematics of lower extremities for 1st position jump in ballet between two types of ballet shoes)

  • 염창홍;박영훈;서국웅
    • 한국운동역학회지
    • /
    • 제13권3호
    • /
    • pp.327-340
    • /
    • 2003
  • The purpose of this study was to investigate the height of jump, angle of the ankle and knee, the angular velocity of the ankle and knee between two types of ballet shoes during a jump in the 1st position. The subjects were 5 female ballet majors of university in Busan the majors who have been dancing ballet for six years on the average. The conclusions are as follows: 1. The height of jump had no significant difference between two types of ballet shoes, and then the average of the height of jump with point shoes group ($20.24{\pm}4.62\;cm$) was a little higher than ballet shoes group ($17.50{\pm}4.05\;cm$). 2. The angle of the ankle had no significant difference for all events between two types of ballet shoes. The minimum angle of ankle joint was represented to $54.36_{\circ}$ at the E1 of the left ankle angle of the ballet shoes and the maximum value was showed $155.43_{\circ}$ at the E3 of the right ankle angle of the point shoes. 3. The angle of the knee had no significant difference for all events between two types of ballet shoes. The minimum angle of knee joint was represented to $99.54_{\circ}$ at the E1 of the left knee angle of the ballet shoes and the maximum value was showed $174.25_{\circ}$ at the E3 of the right knee angle of the point shoes. 4. The ankle velocity of the ankle had no significant difference for all events between two types of ballet shoes. The minimum angular velocity of the ankle was represented to 4.35 deg/s at the maximum height(E3) of the point shoes and the maximum value was showed 597.81 deg/s at the take-off(E2) of the right ankle angle of the point shoes. 5. The angular velocity of the knee had significant difference between two types of ballet shoes at the event 1(p<.05). The minimum angular velocity of the hee was represented to -1.68 deg/s at the maximum height(E3) of the point shoes and the maximum value was showed 360.25 deg/s at the take-off(E2) of the left knee angle of the ballet shoes. The other events had no significant difference between two types of ballet shoes.

중족골 바 형태의 전족부 라커 신발이 하지 근 활성도 및 족저압력 분포에 미치는 영향 (Effects of Forefoot Rocker Shoes with Metatarsal Bar on Lower Extremity Muscle Activity and Plantar Pressure Distribution)

  • 박인식;정지용;전근환;원용관;김정자
    • 한국운동역학회지
    • /
    • 제22권1호
    • /
    • pp.113-121
    • /
    • 2012
  • The purpose of this study was to evaluate the effects of forefoot rocker shoes equipped with a metatarsal bar on lower extremity muscle activity and plantar pressure distribution. Ten healthy women in the age of twenties were participated in this study as the subjects. All subjects walked on a treadmill(Gait Trainer, BIODEX, USA) wearing normal shoes and metatarsal bar shoes, during which the plantar pressure distribution and muscle activity were measured. Using Pedar-X system(Novel Gmbh, Germany), the plantar pressure was measured for six regions of the foot: forefoot, midfoot, rearfoot, 1st metatarsal, 2-3th metatarsal, and 4-5th metatarsal, and for each sub-region, 4 features such as maximum force, contact area, peak pressure, and mean pressure were analyzed based on the plantar pressure. EMG(Electromyography) activity was measured by attaching surface electrodes to the rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius medial head, and magnitude of muscle contraction was analyzed in IEMG(Integrated EMG) value. The results show that the maximum force, contact area, peak pressure, and mean pressure in the midfoot all increased while maximum force, peak pressure, contact area, mean pressure in the 1st metatarsal and 2-3th metatarsal all decreased when wearing functional shoes. Also, muscle activities in the four muscles were all decreased when wearing the functional shoes. This paper suggests that forfoot rocker shoes equipped with a metatarsal bar can help disperse the high pressure and absorb the shock to the foot as well as give positive influence on gait pattern and postural stability by reducing muscle fatigue during walking.

고탄성 런닝화가 생체역학적 요소에 미치는 영향 (Effect of High Elastic Running Shoes on Biomechanical Factors)

  • Lee, Jungho
    • 한국운동역학회지
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 2020
  • Objective: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Method: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Results: In vastus lateralis muscle Activation, Type 55 were significantly higher for Type 50 and X (p=0.019, p=0.045). In Gluteus Maximus muscle activation, Type 55 was significantly lower for type 50 (p=0.005). In loading late, Type 55 and X were significantly higher for type 45 (p=0.008, p=0.006). Conclusion: The components of a shoe are very complex, and there can be many differences in manufacturing as well. Although some differences can be found in the biomechanical variables of the high elastic midsole, it is difficult to interpret the performance enhancement and injury prevention.

신발 아웃솔의 굴곡 형태에 따른 하지근육활동의 특성과 보행 패턴의 비교연구 (A Comparative Study of Characters of Muscle Activity in Lower Limb and Gait Pattern on Type of Heel Rockers)

  • 안송이;김상범;이기광
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.111-119
    • /
    • 2007
  • The purpose of this study was to investigate muscle activity and gait pattern in lower limb depending on the outsole of heel rockers. Fifteen healthy men volunteered for this experiment. Each subject performed totally three trails with two pairs of different heel rocker shoes and a pair of normal running shoes at speed of 1.33m/s for 1 minute during walking on a treadmill. Kinematic data gathered in 100Hz was recorded and analyzed by using the 3D motion capture system to measure the trunk tilt and joint angle of the right lower limb. And the lower extremity muscle activities were simultaneously recorded in 1000Hz and assessed by using EMG. The statistical analysis was the one-way ANOVA with the repeated measures to compare among the three kinds of shoes. The level of statistical significance for all tests was 0.05. Joint angle of lower limb was showed statistically significant different in MST(hip joint), LHS(ankle joint), and RTO(knee and ankle joint). Muscle activity of rectus femoris and biceps femoris was statistically increased in both heel rocker shoes during gait cycle on treadmill. The maximum peak time of tibialis anterior in the negative heel rocker showed the delay of approximately 23.8%time than normal shoes. Gait pattern variability of the negative heel rocker was increased in the first half of the stance phase and the variability of the positive heel rocker was increased in the terminal stance phase. In Conclusion, stability was decreased in between joints of lower limb on positive heel rocker than negative heel rocker. This study found that there were different joint angle, muscle activity, gait pattern and coordinate system of the lower limb in each kind of shoes. These unstability affected the lower extremity and the whole body. A further study has to be continued with study of rehabilitation and exercise for a long-term.

유선형 신발이 정적 자세변화 및 하퇴근전도에 미치는 효과 (The Effects of Shoes with Curved Out-Sole on the Variations of Static Posture and EMG of Calf)

  • 신학수;은선덕;유연주
    • 한국운동역학회지
    • /
    • 제18권1호
    • /
    • pp.245-253
    • /
    • 2008
  • 본 연구의 목적은 유선형 신발바닥면을 가진 신발의 착용이 자세의 변화 및 조절전략에 미치는 영향을 살펴보는 것이다. 먼저 30명의 여대생을 대상으로 신발의 족저면과 접지면의 상대각도가 조절된 상태에서 'New York State Posture Test'로 평가하여 최적의 각도의 신발(s)을 제작한 후 여대생 10명씩 3개 집단에 대해 각각 제작된 신발(s)과 유선형 신발(m), 일반신발(n)의 8주착용 전 후의 전경골근, 비복근의 근활성도를 평가하였다. 1. 'New York State Posture Test'에서의 자세평가점수는 신발의 각도변화에 따라 $-2^{\circ}$, $-7^{\circ}$에서 쌍봉형을 이루었으며 통계적으로 유의하였다. 또한 $-7^{\circ}$에서 가장 좋은 평가점수가 나왔으므로 이 각도로 신발을 제작하였다. 2. 유선형의 아웃솔을 가진 s, m 신발의 활성패턴을 보면 맨발에서 s신발 착용자의 경우 비복근, m신발 착용자는 전경골근의 활성도가 증가하였으며, 신발을 착용한 상태에서는 s신발에서만 비복근의 활성도가 높게 나타났다.

마라톤화 착용 시 후족제어에 미치는 영향 (The Influence of Rearfoot Motion Control through Marathon Shoes On and Off)

  • 김용재;장성일
    • 한국운동역학회지
    • /
    • 제15권2호
    • /
    • pp.69-81
    • /
    • 2005
  • In this study using two-dimensional system of the analysis of image, when normal males in their twenties who have normal foot and step with heel first are walking and running, they who are wearing running shoes or barefoot are testing and comparing the exchange factors of heel control. There are following results of this test by verifying them with T-Test. 1) When they are running, there are two big different gap which is $6.05^{\circ}$ between barefoot and wearing the running shoes. The former is $174.79^{\circ}{\pm}6.31$ and the latter is $180.84^{\circ}{\pm}4.69$. But it is not statistically significant. The angle of first step with heel is $100.42^{\circ}{\pm}3.95$ with barefoot and $93.97^{\circ}{\pm}094$ with wearing the running shoes. In this case, it is statistically significant(p<.01) 2) When they are running, the angle of the Achilles' tendon has different gap which is $5.24^{\circ}$ between barefoot and wearing the running shoes. The former is $179.70^{\circ}{\pm}4.23$ and the latter is $184.94^{\circ}{\pm}4.09$. It is not statistically significant. The angle of minimal step with heel is $96.30^{\circ}{\pm}3.07$ with barefoot and $90.84^{\circ}{\pm}0.44$ with wearing the running shoes. In this case, it is statistically significant(p<.01). 3) In the angle of the Achilles' tendon and the angle of first step with heel, when they are walking, the angle of the Achilles' tendon has different gap which is $1.81^{\circ}$ between barefoot and wearing the running shoes. The former is $6.39^{\circ}{\pm}0.83$ and the latter is $8.20^{\circ}{\pm}1.85$. It is not statistically significant. The angle of first step with heel is $2.32^{\circ}{\pm}0.51$ with barefoot and $3.22^{\circ}{\pm}1.44$ with wearing the running shoes. It is not statistically significant. 4) In the angle of the take-off of Achilles' tendon, when they are walking, the angle of the take-off of Achilles' tendon has different gap which is $3.88^{\circ}$ between barefoot and wearing the running shoes. The former is $177.62^{\circ}{\pm}8.78$ and the latter is $173.74^{\circ}{\pm}16.31$. It is statistically significant(p<.05). Therefore, they are running, the angle of the take-off of Achilles' tendon is $178.37^{\circ}{\pm}19.28$ with barefoot and $171.26^{\circ}{\pm}12.18$ with wearing the running shoes. It is statistically significant(p<.05).

롤러 신발과 조깅 신발 착용 후 보행 시 하지 분절의 운동학적 특성 비교 분석 (The Comparative Analysis of Wearing Roller Shoes and Jogging Shoes on Kinematic Characteristics in the Lower Extremity during Walking)

  • 장재익;채원식;강년주;윤창진
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.399-406
    • /
    • 2009
  • 본 연구의 목적은 롤러 신발과 조깅 신발 착용 후 보행 시 운동학적 변인에 대하여 비교 분석 하는데 있다. 이를 위해 하지 근골격계에 이상이 없는 중학생 8명을 피험자로 선정하여 3차원 동작 분석을 실시하였다. 분석 결과, 활보장, 인체무게 중심변위 및 선속도, 관절각 및 각속도에서 집단 간 통계적으로 유의한 차이를 보였다. 특히 롤러 집단의 경우 지지 시 발목 관절각이 증가하고 무릎각의 각속도가 감소하는 결과를 나타내었다. 이는 롤러 신발의 경우 장착된 휠에 의해 지지 시 적절한 배측굴곡이 이루지지 못하고, 불안정성을 극복하기 위해 무릎의 과도한 굴곡이 나타난 것으로 사료되어 진다. 이러한 운동학적 변인의 차이는 롤러 신발 보행 시 정상 패턴과는 다른 불안정한 보행 동작을 유발시키고 이러한 동작이 지속적으로 이루어진다면 하지 근골격계에 변화를 유발시켜 부상 유발의 가능성이 있을 것으로 생각된다. 따라서 본 연구 결과를 토대로 향후 보다 안정성 높은 롤러 신발을 개발할 수 있을 것으로 기대된다.

남자 대학생의 신발 착용실태와 장해요인 (A Study on the Wearing Conditions and Factors of Discomfort with Shoes for Male College Students)

  • 권수애;최종명;김정숙
    • 한국의류학회지
    • /
    • 제29권1호
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is to find out the wearing conditions and cause of discomfort with shoes for male college students which will provide useful information fur the shoes manufacturer. The questionnaire survey was conducted on 346 male college students on purchasing practices, wearing conditions, and overall satisfaction with shoes. The results were as follows: Male college students have a tendency to have longer buying cycles and buy more expensive shoes compare to high school students. The order of criteria considered fer purchasing was shape, price, style coordination with clothing. The order of criteria considered for purchasing differed according to their major, economic status and purchasing place. Most of them have two pairs of white or black sports shoes and one pair of either black or brown dress shoes. The most popular material was man made leather but college students have more leather shoes than high school students. There were differences between high school students and college students in wearing conditions, how many they have, material and color. The varieties of shoes differed by season. They were satisfied with their shoes' design and color but unsatisfied with qualify or the material and durability of the shoes. Due to the pressure of the shoes, they experienced discomfort such as numbness, blisters on the feet and red skin. They experienced discomfort on the soles of the feet. The causes of discomfort were shape, width, hight of the heel, material and length in order. Dress shoes cause more discomfort than sport shoes due to the hardness of material, and flexibility of the sole. Since the material differed by the price, the degree of discomfort significantly differed by price too.

보행 시 신발의 아웃솔 형태가 하지 관절 운동과 발의 압력에 미치는 영향 (The Effect of Form and Hardness of Outsoles on the Motion of the Lower Extremity Joints and on Foot Pressure during Gait)

  • 김의환;김성섭;권문석;위웅량;임정;정재욱
    • 한국운동역학회지
    • /
    • 제21권2호
    • /
    • pp.223-230
    • /
    • 2011
  • The purpose of this study was to analysis the effect of form and hardness of outsoles on the motion of the lower extremity joints and on foot pressure during gait. The subjects were 15 women(mean age, $48.5{\pm}2.4$ years), who had no serious musculoskeletal, coordination, balance or joint/ligament problems within 1 year prior to the study. The pelvic tilt, joint angles at the lower extremities and the vertical ground reaction force(GRF) were compared during gait with 3 types of shoes (A, B, C) by using one-way repeated ANOVA(p<.05). During gait, the peak tilt angle and the range of motion(ROM) of the ankle and knee joints were found to be significantly different among the 3 types of shoes. The type C shoes showed a significantly lower mean second maximum vertical GRF than types A and B. The curved outsoles of type C shoes, which had a form and hardness different from those of A and B, was designed strategically for walking shoes to provide stability to the Additionally, type C induced the dispersion of eccentric pressure and made the center of pressure roll over to the center line of the foot.