• Title/Summary/Keyword: Spore suspension

Search Result 89, Processing Time 0.03 seconds

Undescribed Fungal Leaf Spot Disease of Pepper Caused by Cercospora capsici in Korea (고추의 미기록병(未記錄病)인 Cercospora capsici에 의(依)한 고추 반점병(斑點病))

  • Sung, Jae-Mo;Cho, Eui-Kyoo;Cho, Dong-Jin;Kang, Soo-Woong
    • The Korean Journal of Mycology
    • /
    • v.12 no.2
    • /
    • pp.75-77
    • /
    • 1984
  • An undescribed Cercospora leaf spot of pepper grown in a greenhouse was observed at Jinju area in 1983. The symptom of this disease showed frog eyes spot on lower leaves of pepper. Leaves and petiole of pepper plant inoculated with spore suspension of this pathogen app­eared leaf spot after 2 weeks and exhibited cicular, brown frog eyes spot. This fungus was grown slowly on PDA and produce condia on infected leaves. The occurrence of this disease was responsi­ble for factors with high temperature and humidity conditions in the ill-ventilated greenhouse. This causal fungus was identified as Cercospora capsici Heald et. Wolf from the shape and length of the conidiophores, the length of the condia, and pathogenic behaviors.

  • PDF

Solid-State Fermentation for the Production of Meroparamycin by Streptomyces sp. strain MAR01

  • El-Naggar, Moustafa Y.;El-Assar, Samy A.;Abdul-Gawad, Sahar M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.468-473
    • /
    • 2009
  • The antibiotic meroparamycin was produced in the free culture system of Streptomyces sp. strain MAR01. Five solid substrates (rice, wheat bran, Quaker, bread, and ground corn) were screened for their ability to support meroparamycin production in solid-state fermentation. In batch culture, wheat bran recorded the highest antibacterial activity with the lowest residual substrate values. The highest residual substrate values were recorded for both ground corn and Quaker. On the other hand, no antibacterial activity was detected for rice as a solid substrate. The use of the original strength of starch-nitrate medium in the solid-state fermentation gave a lower antibacterial activity compared with the free culture system. Doubling the strength of this medium resulted in the increase in the activity to be equivalent to the free culture. The initial pH (7.0) of the culture medium and 2 ml of spore suspension (1 ml contains $5{\times}10^{9}spores/ml$) were the optima for antibiotic production. The water was the best eluent for the extraction of the antibiotic from the solid-state culture. Ten min was enough time to extract the antibiotic using a mixer, whereas, 60 min was required when shaking was applied. Semicontinuous production of meroparamycin using a percolation method demonstrated a more or less constant antibacterial activity over 4 runs ($450-480{\mu}g/ml$). The semicontinuous production of the antibiotic was monitored in a fixed-bed bioreactor and the maximum activity was attained after the fourth run ($510{\mu}g/ml$) and the overall process continued for 85 days.

Significance of Semame Seedborne Fungi, with special Reference to Corynespora cassiicola (참깨의 종자전염성 진균과 그 병원성 : Corynespora cussiicola를 중심으로)

  • Yu Seung-Heon
    • Korean journal of applied entomology
    • /
    • v.20 no.4 s.49
    • /
    • pp.183-190
    • /
    • 1981
  • Alternaria sesami, A. sesamicola, A. tenuis, A. longissima, Cercospora sesami, Cephalosporium sp., Corynespora cassiicola, Fusarium equiseti, F. moniliforme, F. oxysporum, F. semitectum, Macrophomina phaseolina and Myrothecium roridum were detected from 40 seed samples of sesame. A sesami, A. sesamicola, A. tenuis and C. cassiicola were the predominant fungi. Except C. cassiicola, all fungi were almost completly reduced and wiped out the infection by pretreatment with chlorine. Plating components also indicate that C. cassiicola was well-established infections. Seedborne infection of C. cussiicola caused heavy seed rot and seedling mortality. Detailed description has been given on the habit character of C. cassiicola under stereoscopic microscope and the variation in colony character and spore morphology have been taken into account. In inoculation experiments, C. cassiicola produced severe leaf and stem spots and blights on sesame plants resulted in ultimate death of the plants. A. sesami, A. sesamicola A. longissima and C. sesami also produced mild to severe leaf spotting and leaf blight when suspension of their conidia were sprayed on to plants. In soil inoculation experiments, F. oxysporum and M. phaseolina were the most pathogenic causing seed rot and seedling blight.

  • PDF

Biocontrol Activity of Acremonium strictum BCP Against Botrytis Diseases

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Jang, Kyoung-Soo;Nam, Myeong-Hyeon;Lee, Seon-Woo;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • Biological control activity of Acremonium strictum BCP, a mycoparasite on Botrytis cinerea, was examined against six plant diseases such as rice blast, rice sheath blight, cucumber gray mold, tomato late blight, wheat leaf rust, and barley powdery mildew in growth chambers. The spore suspension of strain BCP showed strong control activities against five plant diseases except against wheat leaf rust. On the other hand, the culture filtrate of A. strictum BCP was effective in controlling only cucumber gray mold and barley powdery mildew. Further in vivo biocontrol activities of A. strictum BCP against tomato gray mold were investigated under greenhouse conditions. Control efficacy of the fungus on tomato gray mold increased in a concentration-dependent manner. Treatment of more than $1{\times}10^6$ spores/ml significantly controlled the disease both in tomato seedlings and in adult plants. The high disease control activity was obtained from protective application of the strain BCP, whereas the curative application did not control the disease. Foliar infections of B. cinerea were controlled with $1{\times}10^8$ spores/ml of A. strictum BCP applied up to 7 days before inoculation. In a commercial greenhouse, application of A. strictum BCP exhibited the similar control efficacy with fungicide procymidone (recommended rate, $500{\mu}g/ml$) against strawberry gray mold. These results indicate that A. strictum BCP could be developed as a biofungicide for Botrytis diseases under greenhouse conditions.

Primary Inoculum of Strawberry Anthracnose in Nursing Field (육묘상에서 딸기탄저병의 1차전염원)

  • Kim, Seung-Han;Kim, Dong-Geun;Yoon, Jae-Tak;Choi, Sung-Gook;Lee, Joon-Tak
    • Research in Plant Disease
    • /
    • v.8 no.4
    • /
    • pp.228-233
    • /
    • 2002
  • This experiment was carried out to investigate the primary inoculum of strawberry anthracnose in nursery field. The pathogen, Colletotrichum gloeosporioides was not detected in soil and weeds of nursery field but symptom of anthracnose was developed in mother plants collected from market after incubation in humid chamber, The symptom of anthracnose was expressed in the strawberry plant that reserved for 17 days in field after inoculation by spore suspension but was not observed there after. When inoculated leaves were observed by SEM, only appressoria were observed 7 days after inoculation. So, it is guessed that dissemination of Colletotrichum sp. into nursery held will be by contamination of mother plants, and diagnosis by naked eyes may be impossible because symptom will be not developed if environment is to be adequate to penetration and in case of imperfect penetration after germination, the pathogen remains appressorium to achieve penetration.

Efficient Target-Site Assay of Chemicals for Melanin Biosynthesis Inhibition of Magnaporthe grisea

  • Kim, Jin-Cheol;Son, Mi-Jung;Kim, Heung-Tae;Park, Gyung-Ja;Hahn, Hoh-Gyu;Nam, Kee-Dal;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.16 no.3
    • /
    • pp.125-129
    • /
    • 2000
  • A rapid and efficient assay to determine melanin biosynthesis inhibition of Magnaporthe grisea, a causal agent of the rice blast, by chemicals was developed. Wells in 24-well plates were loaded with spore suspension of the fungus and three known melanin biosynthesis inhibitors of KC10017, tricyclazole, and carpropamid. Subsequent color changes of mycelia and culture media in the wells were observed 7 days after incubation. The wells treated with KC10017 (an inhibitor of polyketide synthesis step and/or pentaketide cyclization step) became colorless, whereas tricyclazole (an inhibitor of 1, 3, 8-trihydroxynaphthalene reductase) or carpropamid (an inhibitor of scytalone dehydratase)-treated wells exhibited red color. They did not show any inhibitory effect on fungal growth. The inhibition of reaction steps prior to 1, 3, 6, 8-tetrahydroxynaphthalene formation was easily determined by colorless medium and mycelia. However, it was impossible to distinguish between inhibition of reduction steps and inhibition of dehydration steps by colors of the cultures. It was accomplished through HPLC analysis of the melanin biosynthesis-involving pentaketide metabolites accumulated by the inhibitors. Through screening of a number of synthetic chemicals using the in vitro assay, we could find a novel chemical group of melanin biosynthesis inhibitor.

  • PDF

Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum

  • Jung, Boknam;Park, Sook-Young;Lee, Yin-Won;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • Fusarium head blight (FHB) caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed.

Timing of Fusarium Head Blight Infection in Rice by Heading Stage

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Heu, Sunggi;Shim, Hyeong Kwon
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.283-286
    • /
    • 2018
  • Fusarium graminearum causes the devastating plant disease Fusarium head blight and produces mycotoxins on small cultivated grains. To investigate the timeframe of F. graminearum infection during rice cultivation, a spore suspension of F. graminearum was applied to the rice cultivars Dongjin 1 and Nampyeongbyeo before and after the heading stage. The disease incidence rate was the highest (50%) directly after heading, when the greatest number of flowers were present, while only 10% of the rice infected 30 days after heading showed symptoms. To understand the mechanism of infection, an F. graminearum strain expressing green fluorescent protein (GFP) was inoculated, and the resulting infections were visually examined. Spores were found in all areas between the glume and inner seed, with the largest amount of GFP detected in the aleurone layer. When the inner part of the rice seed was infected, the pathogen was mainly observed in the embryo. These results suggest that F. graminearum migrates from the anthers to the ovaries and into the seeds during the flowering stage of rice. This study will contribute to uncovering the infection process of this pathogen in rice.

Assessment and Applications of Multi-Degradable Polyethylene Films as Packaging Materials

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon;Lee, Sun-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2006
  • Degradation performance of environmentally friendly plastics that can be disintegrated by combination of sunlight, microbes in soil, and heat produced in landfills was evaluated for use in industries. Two multi-degradable master batches (MCC-101 and MCC-102 were manufactured, separately mixed with polyethylene using film molding machine to produce 0.025 mm thick films, and exposed to sunlight, microbes, and heat. Low- and high-density polyethylene (LDPE and HDPE) films containing MCC-101 and MCC-102 became unfunctional by increasing severe cleavage at the surface and showed high reduction in elongation after 40 days of exposure to ultraviolet light. LDPE and HDPE films showed significant physical degradation after 100 and 120 days, respectively, of incubation at $68{\pm}2^{\circ}C$. SEM images of films cultured in mixed mold spore suspension at $30^{\circ}C$ and 85% humidity for 30 days revealed accelerated biodegradation on film surfaces by the action of microbes. LDPE films containing MCC-l01 showed absorption of carbonyls, photo-sensitive sites, at $1710\;cm${-1}$ when exposed to light for 40 days, whereas those not exposed to ultraviolet light showed no absorption at the same frequency. MCC-101-based LDPE films showed much lower $M_w$ distribution after exposure to UV than its counterpart, due to agents accelerating photo-degradation contained in MCC-101.

Characterization of Monilinia fructicola Associated with Brown Rot of Cherry Fruit in Korea (체리 잿빛무늬병에 관여하는 Monilinia fructicola의 특성)

  • Choi, Hyo-Won;Hong, Sung Kee;Lee, Young Kee;Nam, Young Ju;Lee, Jae Guem;Shim, Hong Sik
    • The Korean Journal of Mycology
    • /
    • v.42 no.4
    • /
    • pp.353-356
    • /
    • 2014
  • In August 2013, brown rot was observed on cherry fruits (Prunus avium L.) in Hwaseong city, Korea. Fruit rot first appears as small, circular brown spots that increase rapidly in size causing the entire fruit to rot. Grayish spores appear in tufts on rotted areas. Based on these morphological characteristics, the two isolates were identified as Monilinia fructicola. Molecular analysis of 5.8S subunit and flanking internal transcribed spacers (ITS1 and ITS2) was performed to confirm the identification. The ITS sequences had 100% identity with those of other reference M. fructicola isolates of NCBI GenBank. Pathogenicity was tested using spore suspension inoculation on wounded or unwounded cherry fruits. The lesions were observed on wounded and unwounded fruits after inoculation for 7 days. This is the first report on M. fructicola causing brown rot on cherry fruits in Korea.