• 제목/요약/키워드: Spool valve

검색결과 142건 처리시간 0.141초

비선형 디지탈 시뮬레이션에 의한 유압서보 시스템 해석 (Nonlinear digital simulation for the analysis of a hydraulic servo system)

  • 이상열;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.346-351
    • /
    • 1987
  • In this study, digital simulation with nonlinear modeling is carried out to analyse the performance of a hydraulic servomotor system developed for the position control of a large inertia. Nonlinear element, such as nonlinear pressure flow relationships of servovalve, valve spool limits, nonlinear friction, and backlash and resilience of gear system are included in the simulation along with the dynamic characteristics of variable delivery pump compensation mechanism. Simulation results are compared with experimental results for both step and sinusoidal inputs. Independent of input magnitude, both results are in good agreement with minor differences in detail.

  • PDF

IMV를 이용한 굴착기 작업장치 궤적제어 (Trajectory Control of Excavator Actuators Using IMV)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권2호
    • /
    • pp.45-54
    • /
    • 2020
  • The IMV is a combination of four two-way valve systems which replace a conventional four-way spool valve to improve efficiency mostly in excavator hydraulics. As the environmental regulations for construction equipment have tightened, some overseas advanced companies have released commercial excavators in which the MCV is implemented with the IMVs. Development of the IMV type MCV relies on the control algorithm as well as the robust performance of proportional flow control valves. In this study, the IMV controller was designed and verified with experiments for the excavator working unit, which determines the IMV mode of operation and the extent of the valve opening in consideration of the load conditions on hydraulic actuators. First, the open-loop controller was designed with a joystick command vs. a PSV reference current map comprising several control parameters in to compensate for the different flow characteristics and non-linearities of two-way flow control valves. Second, the closed-loop controller was designed with the PI control fed by the actuator displacement and outputs actuator percent effort equivalent to the operator's joystick command. Finally, the performance of the IMV type MCV was verified with the trajectory control of position references derived from the energy consumption test standard. Experimental results showed the control performance of the IMV developed in this study, and suggest that future studies to be conducted to advance technical progress.

고온 환경에서의 압전작동기를 이용한 1단 밸브의 성능 평가 (Performance Evaluation of a Piezostack Single-stage Valve at High Temperatures)

  • 한철희;김완호;최승복
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.168-174
    • /
    • 2017
  • In this work, a piezostack single-stage valve (PSSV) system is proposed and its control performance is experimentally evaluated at high temperature up to $150^{\circ}C$. In order to achieve this goal, a PSSV system is designed and operating principle and mechanical dimensions are discussed. A displacement amplifier and an adjust bolt are used to generate target displacement and to compensate thermal expansion. Then, an experimental apparatus is constructed to evaluate control performance of the PSSV system. The experimental apparatus consists of a heat chamber, a hydraulic circuit, a pneumatic circuit, pneumatic-hydraulic cylinders, thermal insulator, electronic devices, sensors, data acquisition (DAQ) board and a voltage amplifier. The flow rate and displacement control performance of the valve system are evaluated via experiment. The experimental results are evaluated and discussed at different temperatures and frequencies showing the controlled flow rate and spool displacement.

Moving Mesh를 이용한 PCV 밸브의 내부유동 수치해석 (A numerical analysis for internal fluid flow of a PCV valve by using moving mesh)

  • 이종훈;최윤환;이연원
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.40-44
    • /
    • 2005
  • A great deal of exhaust gas inside a combustion room goes out through exhaust pipe but residual gas, is called "Blowby gas", enters the crankcase through a small gap between the piston and the cylinder wall. Here, if the crankcase isn't vented, this causes many bad effects such as lubricant oil contamination, corrosion by that and crankcase explosion by rising pressure. So, most automobiles are constituted with a PCV (Positive Crankcase Ventilation) system to prevent previous problems. PCV valve is the most important part in this ventilation system. When companies are manufacturing new engines, engineers are designing it depending on their experiments than theoretical knowledge. Mush efforts and times are needed for new development. This study will show quantitative results to increase the possibilities of reduction of developing time.

  • PDF

전기 유압 시스템의 비선형 주파수 응답 해석에 관한 연구 (A Study on Analysis of Non linear Frequency Response of Electro-Hydraulic Systems)

  • 이용주;전봉근;송창섭
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.246-252
    • /
    • 1999
  • In this paper, the frequency response characteristics of the velocity controlled EHS system obtained by linear simulation method, nonlinear simulation method, and experimentation are compared one another, in order to verify propriety of the linearization method in case of analysis of hydraulic systems. The Bode diagrams are obtained by transforming time domain data of experimental results and nonlinear simulated ones with Fourier transform. The results of nonlinear simulation are more similar to the frequency response of the real systems than those of linear simulation. It is found that nonlinearity of hydraulic systems is mainly occurred from servo valve, and nonlinearity is increased as displacement of servo valve spool increases.

  • PDF

Moving Mesh를 이용한 PCV 밸브의 내부유동 수치 해석 (A numerical analysis for internal fluid flow of a PCV valve by using moving mesh)

  • 이종훈;리리;김영국;최윤환;이연원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.19-24
    • /
    • 2004
  • A great deal of exhaust gas inside a combustion room goes out through exhaust pipe but residual gas, is called 'Blow by gas', enters the crankcase through a small gap between the piston and the cylinder wall. Here, if the crankcase isn't vented, this causes many bad effects such as lubricant oil contamination, corrosion by that and crankcase explosion by rising pressure. So most automobiles are constituted with a PCV(Positive Crankcase Ventilation) system to prevent previous problems. PCV valve is the most important part in this ventilation system. When companies are manufacturing new cases, engineers are designing it depending on their experiments than theoretical knowledges. Much efforts and times are needed for new development. This study will show quantitative results to increase the possibilities.

  • PDF

IMV를 사용한 유압굴삭기 붐 동작의 에너지 절감 (Energy Saving in Boom Motion of Excavators using IMV)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권3호
    • /
    • pp.1-7
    • /
    • 2017
  • Energy consumption of conventional hydraulic excavators controlled by MCV is considerable when negative load is applied because the meter orifice and meter-out orifice are machined in one spool. Therefore, IMV is introduced to save energy use of hydraulic excavators, but existing hydraulic excavators have various advantages so it is difficult to make a clear comparison. In this study, we compare the use of an existing MCV excavator that has many advantages such as negative control, and IMV for boom up and down operation, and if IMV is used to save energy, we will examine the cause. If possible, for comparability under the same conditions, both systems use pressure balance valves to minimize power consumption when not using power in the actuator. The orifice area at each notch of each valve is calculated, and energy saving is verified by comparing the two systems through simulation.

PCV(Positive Crankcase Ventilation) 밸브의 유동특성에 관한 수치해석 (Computational Analysis of Flow Characteristics of a PCV Valve)

  • 이종훈;최윤환;이연원
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.66-73
    • /
    • 2005
  • A great deal of exhaust gas inside a combustion room goes out through exhaust pipe. But residual gas 'Blowby gas' enters the crankcase through a small gap between the piston and the cylinder wall. Here, if the blowby gas isn't vented, this causes many bad efffcts such as lubricant oil contamination, corrosion by that and crankcase explosion by rising pressure. So most automobiles are constituted with a PCV(Positive Crankcase Ventilation) system to prevent previous problems. PCV valve is the most important part in this ventilation system. When companies are manufacturing new cases, engineers are designing it depending on their experiments than theoretical knowledges. Much efforts and times are needed for new development. This study will show quantitative results to increase the possibilities for the optimal design.

유전자 알고리즘과 콤플렉스법에 의한 직접구동형 서보밸브의 제어기 상수값 설계 (Controller Parameters Design of Direct Drive Servo Valve Using Genetic Algorithm and Complex Method)

  • 이성래
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.475-481
    • /
    • 2013
  • 직접구동형 서보밸브의 제어시스템은 비선형적이며 밸브스풀에 미치는 유체력의 영향은 매우 크고 부하압력의 크기에 좌우된다. 제어시스템의 설계요구조건을 만족시키기 위해, 제약직접탐색방법인 유전자 알고리즘과 콤플렉스법을 적절히 활용하여 진상-지상제어기 및 미분피드백제어기의 최적 상수값을 탐색하였다. 최적 제어기 상수값을 대입하여 제어시스템을 시뮬레이션한 결과 설계요구조건을 만족하였다.

유압 굴삭기용 폐루프 타입 MCV(Main Control Valve) (Closed loop type MCV(Main Control Valve) for Hydraulic Excavator)

  • 임태형;이홍선;양순용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.864-870
    • /
    • 2005
  • Hydraulic excavators have been popular devices in construction field because of its multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of nonlinear opening characteristics and dead zone of main control valve, oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and whole circuit are expressed graphically. Parameters and nonlinear characteristics are inputted in text style. From the simulation results, fixed spring stiffness of MCV can't satisfy accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing proportional gain is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The simulator can be used to forecastexcavator behavior when new components, new mechanical attachments, hydraulic circuit changes, and new control algorithm are applied. The simulator could be a kind of development platform for various new excavators.

  • PDF