• Title/Summary/Keyword: Spool valve

Search Result 142, Processing Time 0.027 seconds

The Analysis and Design of Electro-pneumatic Servo Valve (공기압 Servo Valve 설계 및 해석)

  • Ko, J.H.;Ryu, D.L.;Lee, J.H.;Kim, Y.S.;Kim, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1210-1214
    • /
    • 2008
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signal into pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristic, no air leakage at null, and can be fabricated at a low-cost. The first objective of this research is to design and fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In this paper, we has been modeled as a system consisting of coupled electro-mechanic and mechanical subsystems. The appropriateness of the model has been verified by simulation. The simulation model resolves the valve body motion and the solenoid current at high accuracy. Also, we are calculate the displacement of spool and computed results show winding currents, magnetic actuator force, flux density line, displacement, velocity, back EMF, eddy current etc.

  • PDF

Development of a Direct-Operated Proportional Pressure Reducing Valve for Low-Band Type Active Suspension Control (Low-Band Type 능동형 현가제어를 위한 직동식 전자비례 감압밸브의 개발)

  • 홍예선;류시복;김영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.75-84
    • /
    • 1994
  • In general direct-operated pressure reducing valves have been gardly applied to a dynamic control system such as active suspension control because of their poor control stability. But they are more robust than pilot-operated type and do not need pilot control flow. In this paper development of a new direct-operated proportional pressure reducing valve for low-band type active suspension control is reported. By means of a special damper directly linked to the valve spool, the control stability could be effectively improved without drawback in response time. The linearity error was less than $\pm$3.5%. Applied to an experimental active suspension system the new valve showed the $-90^{\circ}$ phase delay at 4Hz with 20% sinusoidal signal input and could control the suspension system with almost same performance as that with a pilot-operated type valve.

  • PDF

Bucket Actuator Pressure Control by Independent Metering Valve for Excavator (독립제어 밸브에 의한 굴삭기 버켓 액추에이터 압력제어)

  • Yang, Joo-Ho;Jung, Tae-Rang
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.36-42
    • /
    • 2016
  • A cylinder control system of the conventional construction machine has been controlled by hydraulic spool valves. This system is low-cost but system efficiency is not high. Recently, to improve this, all valves are controlled electronically and independently. Bu and Yao suggested four way electronic hydraulic control valve system. It is called IMVT(Independent Metering Valve Technology). The purpose of the study is to find proper IMV pressure control method for excavator and to validate excavator's bucket regeneration energy effect by controlling the IMV system. In this paper, we mathematically describe the bucket system of excavator first. And then, based on these results, we design the control system which is divided into two operations(none regeneration or regeneration).The results of the experiment show the desirable performance and usefulness of the designed control system.

A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator (유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발)

  • 윤영환;장주섭;최명진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

Influence of Design Variables on Flow Characteristics of Poppet Valve using Analysis of Means (평균분석을 이용한 설계변수가 포핏 밸브의 유동특성에 미치는 영향)

  • Jeong, Ja-Young;Choi, Eun-Ho;Kang, Young-Jin;Noh, Yoojeong;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.239-248
    • /
    • 2017
  • According to the structure, solenoid valve can be categorized as spool valve or poppet valve. While various research on spool valve which has simple structure and fine susceptibility to contamination has been conducted, poppet valve which has less susceptibility to contamination and advantage in a long time operation still need much research because of its complicated structure. In order to design the poppet valve, various parameters such as the diameter of the poppet, the angle of the poppet, the diameter of the disk, the spring stiffness, the spring preload and flow path structure should be considered. Conventional studies on poppet valve usually take only one design parameters and did not much focused on the effect of the parameters on flow characteristics. In this paper, the change of the flow characteristics according to the design parameters of the poppet valve for 3/2Way solenoid valve is analyzed. The previous studies and the results of initial model analysis was referred for the selection of the design parameters. The effects of design parameters on maximum pressure, minimum pressure, and pressure drop was examined using analysis of means(ANOM).

Analysis of Characteristics of Load Movement in Mobile Hydraulic Equipment (모바일 유압장치에서 부하의 유지와 내림 특성 비교)

  • Jo, Mi Hyeon;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.17-22
    • /
    • 2018
  • Mobile hydraulics require higher energy efficiency, and a simpler as well as robust design, than general industrial hydraulics. The 6/3-way directional control valve is widely used as a mobile hydraulic control valve. However, since the 6/3-way directional control valve is a spool type valve, it is difficult to maintain the load. A counterbalance valve is typically used, to maintain the load, and lift down. However, in an industrial field using a mobile hydraulics device, a pilot controlled check valve may be used to implement holding and lifting operation of the self-weight load, and a relief valve may be used simply to exert back pressure. But no comparative analysis of advantages and disadvantages of each method was revealed. In this study, various methods of holding and unloading load with self-weight in mobile hydraulics are investigated, and compared through simulation using AMESim software. This is experimentally verified by using Festo's mobile hydraulic test rig TP800.

A Study on Dynamic Valve Characteristics of Regulators in Hydraulic Winches According to Design Parameters (선박용 유압윈치용 레귤레이터의 설계 파라미터 변화에 따른 밸브 거동 특성 연구)

  • Jeong, Yoo Seong;Chung, Won Jee;Noh, Ki Tae;Lee, Jung Min;Choi, Jong Kap;Jeong, Young Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.214-222
    • /
    • 2017
  • Maritime deck machinery relies heavily on the importation of components produced by overseas companies. Our research defines design parameters for hydraulic winch regulators used in maritime deck machinery. Using Amesim, we were able to conduct 1D modeling, and utilizing CFS then enabled us to create 3D models. These models were analyzed in our research for changes in pressure on each port that resulted from the regulator's spring constant and changes in the primary tension-compression field. Our research then analyzed alterations in traits caused by changes in the length of overlap between the spool and sleeve. Last but not least, our research analyzed the trait alteration resulting from changing the interval between the spool and sleeve. We believe the results of our research can be used to design a hydraulic winch regulator used in maritime deck machinery that does not require importation.

Analysis of Dynamics Characteristics for Friction Elements in Automatic Transmission (자동변속기 마찰요소의 동특성 해석)

  • 최영종;정우진;김성원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.9-19
    • /
    • 1997
  • In this paper, the modeling and analysis of dynamic characteristics has been carried out for friction clutches and brakes in an automatic transmission. From the operating oil pressure generated by the valve-body, time delay by check valve and the movement of piston has been examined. Also torque capacity and torque transferred at the clutch is studied. Heat capacity and temperature distribution at the reaction plate of clutch are codeled by time-dependent, nonhomogeneous partial differential equation, and brake torque, brake time, and the amount of heat generated are investigated. It is found that the time delay at the check valve is very short but dominant at the spool.

  • PDF

능동 제어를 이용한 공작기계용 정압베어링의 성능 향상에 관한 연구

  • 강선호;박준호;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.249-254
    • /
    • 1992
  • Hydrostatic Bearings have been applied to ultra high precision machine tools and precision instruments, because of their low friction characteristic, high load carrying capacity and high moving accuracy at all range of speed. In regard to realizing the Hydrostatic Bearing, various restrictors such as capillary, orifice, diaphram valve, spool valve, and etc can be used. However, their stiffness and flexibility are not sufficient in practical use for ultra precision machine tool elements. In this study dynamic equations were derived and the dynamic characteristics were simulated for both orifice and flow control servo valve. Simulation was carried out on the condition that static and sinusoidal dynamic loads were applied to the table of CNC jig Boring machine. The simulation results indicate the improvement of the performance of the Bearing system when flow control servo valve has been used as restrictor of Hydrostatic Bearing.

Robust Design of Main Control Valve for Hydraulic Pile Hammer Flexible Control System

  • Guo, Yong;Hu, Jun Ping;Zhang, Long Yan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.28-38
    • /
    • 2016
  • The flexible control system for hydraulic pile hammer using main control valve is present to the requirement of rapidly reversing with high frequency. To ensure the working reliability of hydraulic pile hammer, the reversing performance of the main control valve should commutate robustness to various interfere factors. Through simulation model built in Simulink/Stateflow and experiment, the effects of relative parameters to reverse performance of main control are analyzed and the main interfere factors for reversing performance are acquired. Treating reverse required time as design objects, some structure parameters as control factors, control pressure, input flow and gaps between spool and valve body as interfere factors, the robust design of the main control valve is done. The combination of factors with the strongest anti-jamming capability is acquired which ensured the reliability and anti-jamming capability of the main control valve. It also provides guidance on design and application of the main control valve used in large flow control with interferes.