• Title/Summary/Keyword: Spool

Search Result 216, Processing Time 0.029 seconds

Design and Performance Test of the Force Motor for Direct Drive-type Pneumatic Servo Valve (직동식 공압서보밸브의 Force Motor 설계 및 성능시험)

  • 이원희;김동수;박상운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.836-839
    • /
    • 2003
  • A pneumatic servo valve which is widely applied in industrial field. And It is consist of force motor, spool & sleeve and servo controller. In this study. we developed the force motor which is consume to low power for a pneumatic servo valve. We could reduce the number of turn of the solenoid by using ferromagnetic permanent magnet and took different direction of each other using one coil instead of two coil. we modeled a system consisting of various electro-mechanical subsystems. The appropriateness of the model was verified by simulation. The simulation model resolved the motion of spool, the winding current and the magnetic force. Also, we calculated the displacement and velocity of the spool, flux contour line, b vector. flux density. flux linkage, back EMF etc.

  • PDF

Optimal Design of Positive Crankcase Ventilation Valve (PCV(Positive Crankcase Ventilation) 밸브 최적화 설계)

  • Lee, J.H.;Kim, J.H.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.68-74
    • /
    • 2006
  • In the development of new automobiles, the efforts to reduce environmental problems like air pollution have been risen. Blowby gas consists of about $20{\sim}35%$ of total amount of Hydrocarbon (HC), one of dangerous pollutants issuing from automobiles. A PCV valve is a very small component in an automotive engine but it is a very important part. Because that a PCV valve is used to control blowby gas and to recirculate it into a manifold automatically. Although it has very simple operating principle, designing a PCV valve is so difficult due to interaction between fluid and solid. In this study, our purpose is to develop a design program for a PCV valve and to verify its efficiency. Both Bernoulli equation and 4th order Runge-Kutta method were adopted to predict spool displacements and flow patterns. Comparing with experiments, it was found that both spool diameters and displacements were predicted well, however, flow rates showed a little differences because of the assumption of non viscous flow.

  • PDF

Development of Electronic Proportional Control Valve with LVDT for Spool Displacement Feedback and Its Performance Evaluation (스풀 변위 피드백을 위한 LVDT 적용 비례전자제어밸브의 개발 및 성능평가)

  • Shin, Haeng-Bong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.160-166
    • /
    • 2016
  • This study proposes the development and performance evaluation of electronic proportional control valve having an LVDT. The electronic proportional control valve is composed of hydraulic valve, proportional solenoid and controller. LVDT is to reduce the steady state error for the reference input of the controller by the feedback signal to detect the displacement of the spool. Designed LVDT is applied to the common proportional valve. In order to evaluate the performance of the developed valve, the hydraulic test equipment was developed and flow tests were carried out. From experimental results, it was proved that the hysteresis was less than 1% based on the maximum flow rate.

Study for the Controller Design of a Direct Drive Servo Valve (직접구동형 서보밸브의 제어기 설계에 관한 연구)

  • 이성래;김종열;김치붕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.136-136
    • /
    • 2000
  • The direct drive servo valve(DDV) is composed of a DC rotor, link, valve spool and displacement sensor(LVDT) where the spool is directly coupled to the DC motor through the link. Since the DDV is a kind of one-stage valve, the robust controller is required to overcome the flow force effect on the spool motion. The mathematical equations are derived and the stability, accuracy and response speed of a DDV are investigated analytically using a linearized system block diagram. Proportional control, PID control. Time-Delay control, Sliding Mode control, and Proportional control using the load pressure are applied to DDV to find which one shows the best control performance. The digital computer simulation results show that the proportional control using the load pressure satisfies the design requirement of response speed and steady state error regardless of the variation of load pressure,

  • PDF

Real-Time Evaluation of Friction Weld Quality of Small-Type Hydraulic Valve Spool by Acoustic Emission (AE에 의한 소형 밸브스풀 마찰용접 품질의 실시간 평가)

  • 오세규;오정환;전태언;김경균;오명석
    • Journal of Welding and Joining
    • /
    • v.12 no.2
    • /
    • pp.97-107
    • /
    • 1994
  • Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding of special hydraulic valve spool of 16mm in diameter. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation periods of the welding and the tensile strength and other properties of the welded joints of $\phi16$ valve spool as well as the various welding variables, as a new approach which attempts finally to develop real-time quality monitoring system for friction welding.

  • PDF

Modelling and Characteristic Analysis of a Servo Valve using Linear Force Motor (리니어 포스모터를 사용한 서보밸브의 모델링 및 특성해석)

  • Huh, J.Y.;Kim, C.J.;Park, C.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.1-6
    • /
    • 2010
  • Direct Drive Valves (DDV) with electric closed loop spool position control are suitable for electrohydraulic position, velocity, pressure or force control systems including those with high dynamic response requirements. The spool drive device is a permanent magnet linear force motor which can actively stroke the spool from its spring centered position in both directions. This basic study is carried out to drive the design parameters for developing a domestic DDV. The static and dynamic characteristics of DDV are examined. The simulation results are compared with data of manufacture's catalog to show the validity of the modelling.

  • PDF

Modeling and Simulation of an EPPR Valve Coupled with a Spool Valve

  • Khan, Haroon Ahmad;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.30-35
    • /
    • 2019
  • EPPR (Electro-hydraulic Proportional Pressure Reducing) valves are pressure control valves. In this study, an independent metering valve (IMV), which is a combination of a spool valve opened and closed with the help of an EPPR valve, was discussed. The overall performance of the valve (IMV) was obtained by the respective modeling and simulation of the system. The valve investigated in this study is to be used for independent metering of hydraulic excavator actuator e.g. boom, arm, bucket etc. To design the model, continuity equations and force balance equations were used. The set of differential equations were then simulated in Simulink using ODE45 option in the configuration toolbox. The valve has to be able to control the flow rate going in and out of the cylinder separately, which is why the particular configuration was needed and selected.

Digital Simulation of a Pilot-type Relief Valve (유압용 파이롯트형 릴리프밸브의 시뮤레시숀 연구)

  • ;;Kim, Hyeun-Soo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.3
    • /
    • pp.104-115
    • /
    • 1979
  • The dynamic chracteristics of a two stage relief valve is studied theoretically and experimentally. The equations of motion of spools are derived and solved by digital compter simulation to find the stiability criteria.It is shown that the area of main spool head gives damping effect to the system and that the flow pressure-coefficient of the orifice in main spool is one of the most important parameters to determine stability and response. The experimental resuls are in good atreement with the theoretical results.

Performance Analysis of Emergency Shut-Off Safety Valve (긴급차단용 안전밸브의 성능해석)

  • Song, H. Y.;Park, K. A.;Ko, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.413-418
    • /
    • 2001
  • Emergency shut-on valve was developed to shut off natural gas at the front of a gas meter in the house. The shut-off flow rate and differential pressure of this valve was controlled by adjusting the distance between the spool and magnet. Also the spool shape was an important factor in the performance of this valve. The experimental and computational results will be useful for the design having better performance.

  • PDF

Remote control scheme for cranes using electro-hydraulic servo positioner with coaxial rotary spool (동축 회전형 스풀을 가진 전기 유압 서어보 위치 제어기를 이용한 크레인의 원격제어)

  • 김홍집;김경진;현웅근;서일홍;오상록
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.693-697
    • /
    • 1990
  • A position control system is developed for an electro-hydraulic servo actuator with coaxial rotary spool, where the actuator is controlled by stepping motor. The position control system is utilized to develop the wireless remotely controlled crane system. And remote engine control system is also developed. Finally, to show the validity of this system, some experimental results and field test results am presented.

  • PDF