• Title/Summary/Keyword: Spontaneous contractions

Search Result 49, Processing Time 0.023 seconds

Effects of $Ca^{2+}-antagonists$ on the electrical activity of guinea-pig taenia coli (결장뉴 전기활동도에 대한 칼슘 길항제의 영향)

  • Kim, Ki-Whan;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 1985
  • The influences of $Ca^{2+}-antagonists$, verapamil and $Mn^{2+}$, upon the spontaneous electrical activity and contractions were studied in guinea-pig taenia coli. Spontaneous contractions were recorded with force transducer, and spike action potentials were measured extracellularly by use of suction electrode. All experiments were performed in tris-buffered Tyrode solution Which was aerated With 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows : 1) Verapamil suppressed the frequency and amplitude of spontaneous contractions dose dependently, and blocked completely mechanical responses at the concentration of 1 mg/1. 2) The frequency of bursts of spike discharge(bursts frequency) and the number of spikes in a burst(spikes frequency) were reduced in a dose·dependent manner within the concentration range of $10^{-5}$ to $10^{-3}g/l$, and bursts frequency was affected more readily at a low concentration of $10^{-5}g/l$ verapamil. 3) The verapamil_induced suppression of spontaneous contractions in the Tyrode solution containing 1 mM $Ca^{2+}$ was completely antagonized by the addition of extra $Ca^{2+}$ to the Tyrode solution $(2\;m\;MCa^{2+})$. 4) $Mn^{2+}$ suppressed the amplitude of spontaneous contractions, whereas $Mn^{2+}$ accelerated the frequency dose-dependently within the range of low concentrations$(10^{-7}\;to\;10^{-4}\;M\;Mn^{2+})$. 5) The bursts frequency determining frequency of spontaneous contractions was increased in a dose-dependent manner, whereas the spikes frequency known to determine the contractions amplitude was reduced within the range of low concentrations. At a high concentration of 1 mM $Mn^{2+}$, however, all spontaneous contractile responses were blocked simultaneously with the disapperance of electrical activity. 6) The frequency and amplitude of spontaneous contractions altered by $Mn^{2+}$ in 1mM $Ca^{2+}$ Tyrode were increased by extra $Ca^{2+}(2mM)$.

  • PDF

Spontaneous Contractions Augmented by Cholinergic and Adrenergic Systems in the Human Ureter

  • Lee, Hyun-Woo;Baak, Cheol-Hee;Lee, Moo-Yeol;Kim, Young-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 2011
  • Interstitial cells of Cajal (ICC) evoke pacemaker activities in many tissues. The purpose of this study was to investigate the relationship between interstitial cell and pacemaker activity in the human ureter through the recording of spontaneous contractions. Spontaneous contractions of eight circular and longitudinal smooth muscle strips of the human ureter to acetylcholine (ACh) and/or norepinephrine (NE) were observed. Human ureteral strips were divided into proximal and distal groups, and each group was subdivided into circular and longitudinal groups. The proximal group showed spontaneous activities of 3~4 times within 5 minutes in the longitudinal group. ACh ($10^{-4}\;M$) augmented the frequency of the spontaneous contractions. The cumulative application of NE also augmented the frequency in a dose-dependent manner. The effects of NE application were inhibited by concomitant application of $10^{-5}\;M$ glibenclamide. Receptor tyrosine kinase (c-kit) staining revealed abundant ICCs only in proximal tissues. Therefore, spontaneous contractions of the human ureter might be modulated by ICC in the proximal region, and the actions might be related with the activation of cholinergic and/or adrenergic system mediated by a glibenclamide-sensitive pathway.

Role of T-type $Ca^{2+}$ Channels in the Spontaneous Phasic Contraction of Pregnant Rat Uterine Smooth Muscle

  • Lee, Si-Eun;Ahn, Duck-Sun;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.241-249
    • /
    • 2009
  • Although extracellular $Ca^{2+}$ entry through the voltage-dependent $Ca^{2+}$ channels plays an important role in the spontaneous phasic contractions of the pregnant rat myometrium, the role of the T-type $Ca^{2+}$ channels has yet to be fully identified. The aim of this study was to investigate the role of the T-type $Ca^{2+}$ channel in the spontaneous phasic contractions of the rat myometrium. Spontaneous phasic contractions and $[Ca^{2+}]_i$ were measured simultaneously in the longitudinal strips of female Sprague-Dawley rats late in their pregnancy (on day 18 ${\sim}$ 20 of gestation: term=22 days). The expression of T-type $Ca^{2+}$ channel mRNAs or protein levels was measured. Cumulative addition of low concentrations (< 1 ${\mu}M$) of nifedipine, a L-type $Ca^{2+}$ channel blocker, produced a decrease in the amplitude of the spontaneous $Ca^{2+}$ transients and contractions with no significant change in frequency. The mRNAs and proteins encoding two subunits (${\alpha}$ 1G, ${\alpha}$ 1H) of the T-type $Ca^{2+}$ channels were expressed in longitudinal muscle layer of rat myometrium. Cumulative addition of mibefradil, NNC 55-0396 or nickel induced a concentration-dependent inhibition of the amplitude and frequency of the spontaneous $Ca^{2+}$ transients and contractions. Mibefradil, NNC 55-0396 or nickel also attenuated the slope of rising phase of spontaneous $Ca^{2+}$ transients consistent with the reduction of the frequency. It is concluded that T-type $Ca^{2+}$ channels are expressed in the pregnant rat myometrium and may play a key role for the regulation of the frequency of spontaneous phasic contractions.

The Contractile and Electrical Responses of Guinea-pig's Gastric Smooth Muscle to Serotonin

  • Lee, Sang-Jin;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.133-146
    • /
    • 1991
  • In order to elucidate systematically the effects of serotonin on gastric motility of guinea-pig, the contractile and electrical responses to serotonin were recorded using four kinds of muscle strips prepared from antral circular, antral longitudinal, fundic circular, and fundic longitudinal muscles. Experiments were performed using various methods including isometric contraction recording, transmural electrical field stimulation, junction potential recording, intracellular microelectrode technique, and partition stimulation method. The results were as follows: 1) The effect of serotonin on spontaneous contractions was inhibitory in the circular muscle strips of the antrum and fundus, while it was excitatory in the longitudinal muscle strips of the antrum and fundus. Serotonin changed mainly phasic contractions of both the circular and longitudinal muscle strips in the antrum, while it changed mainly tonic contractions of both the circular and longitudinal muscle strips in the fundus. 2) On the contractions induced by transmural nerve stimulation, serotonin decreased the amplitude in the circular muscle strips of the antrum, but it increased them in the other three groups of muscle strips(antral longitudinal, fundic circular, and fundic longitudinal). 3) On the contractions induced by direct muscle stimulation, serotonin decreased the amplitude in the circular muscle strips of the antrum and fundus. 4) In the fundic circular muscle strips serotonin potentiated excitatory junction potentials (EJPs), and in the antral circular muscle strips it evoked EJPs after inhibitory junction potentials(IJPS). 5) In the antral circular muscle strips serotonin did not affect the slow wave even at the disappearance of spontaneous contractions. On the contrary it increased the amplitude of the slow wave, when the spike component was potentiated and the second component was inhibited. 6) In the antral circular muscle strips the membrane potential was slightly hyperpolarized, but the membrane resistance was not changed. From the above results following conclusions could be made. 1) Serotonin inhibits spontaneous contractions of the circular muscle layer and it increases those of the longitudinal one, irrespective of the gastric region. 2) In the guinea-pig stomach there exists a serotoninergic facilitatory neuromodulation system which exerts its effect on cholinergically mediated contraction. 3) The excitation-contraction decoupling was observed in the effect of serotonin.

  • PDF

Effects of Ponciri Fructus on Spontaneous Phasic Contractions of Colon in Rats (지실이 대장의 위상성 자발수축운동에 미치는 영향)

  • Choi, Chul-Won;Lee, Moon-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1518-1524
    • /
    • 2008
  • Ponciri Fructus (PF), the immature fruit of Poncirus trifoliata, has been used for treatment of constipation in Korean traditional medicine. It has been reported that PF has a prokinetic effect on gastrointestinal tract, but little is known about the effect on colonic contraction. The aim of this study was to investigate the effect of PF on spontaneous contractions of proximal and distal colon in rats. The aqueous extract of PF was centrifuged and filtered and its supernatant was used for in vitro motility study. The removed colon from rats was divided into proximal and distal segments. Each segment was mounted in a 10 ml organ bath and measured the change of the spontaneous contraction with increasing dose (1, 5, 10, 50, 100, 500, $1000{\mu}g/ml$) of PF extract administration. Also the effect of PF on the spontaneous contraction was measured under treatment of atropine, acetylcholine (Ach), and tetrodotoxin (TTX). PF increased the spontaneous phasic contraction of distal colon dose dependently, but there was no change in proximal colon. The contractile response induced by PF in distal colon was lower than that of Ach and was partially blocked by atropine ($10^{-6}M$). TTX increased the spontaneous contraction and it was reinforced with Ach addition. But the extract of PF had no or little contractile effect of TTX in colon. PF increased spontaneous contractions selectively in distal colon. The prokinetic effect of PF may be due to enhancement of cholinergic related excitatory neural system.

Effects of Ouabain and Vanadate on the Spontaneous Contractions and Electrical Activity in Guinea-pig Taenia Coli (결장뉴 전기활동도에 대한 Ouabain과 Vanadate의 작용)

  • Park, Jong-Kyou;Kim, Ki-Whan;So, In-Suk
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.189-206
    • /
    • 1988
  • The effects of ouabain on the contractile and electrical activities were investigated in the isolated preparations of guinea-pig taenia coli, and compared with those of vanadate. Spontaneous contractions were recorded with force transducer, and electrical activites were measured by use of suction electrode, or single sucrose-gap technique. The contractions were induced by the electrical stimulation for 5 seconds every 1 minute with alternating current (60 Hz, 3.0 V/cm) through the platinum electrodes located in parallel with the long axis of the preparation. All experiments were performed in tris-buffered Tyrode solution which was aerated with $100%{\;}O_2$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) Responses of spontaneous contractions to ouabain were concentration-dependent; $10^{-7}M$ ouabain caused a rise of basal tone. Above the concentration of $10^{-6}M$ ouabain, an initial increase followed by a decrease in tension was observed. 2) A continuous spike discharge was induced by the administration of $10^{-7}M$ ouabain. Above $10^{-6}M$ ouabain, a transient initial increase followed by a decrease in spike frequency and amplitude was produced, and finally membrane potential was sustained at a certain level without a spike discharge. 3) The characteristic response to $10^{-7}M$ ouabain was not blocked by the pretreatment with $10^{-7}M$ atropine. 4) The electrically induced contractions were completely suppressed at the concentration of $2{\times}10^{-7}M$ ouabain. These contractions were blocked more rapidly in paralled with the increase in ouabain concentration. 5) Effects of vanadate on the spontaneous activities were quite different from those of ouabain; $10^{-6}M$ vanadate increased the amplitude of contractions and $10^{-5}M$ vanadate increased slightly both amplitude and frequency of spontaneous contractions. $10^{-4}M$ vanadate showed irregular phasic contractions superimposed on the increased basal tone. 6) $10^{-5}M$ vanadate depolarized the membrane potential and shortened the interval between the bursts of spike discharge, whereas $10^{-4}M$ vanadate induced continuous spike discharge with membrane depolarization. 7) Vanadate caused a characteristic inhibitory response to the contractions induced by electrical stimulation; An initial rapid inhibition of tension development and then gradual recovery to a certain level. From the above results, the following conclusions could be made: 1) The rise of basal tone at $10^{-7}M$ ouabain is due to continuous spike discharge without a silent period. The continuous spike discharge is likely to be associated with a slight membrane depolarization caused by the blockage of Na pump. 2) The biphasic response induced by above $10^{-6}M$ ouabain seems to occur by the different mechanisms. The initial increase in tension is associated with depolarization along with an increase in spike frquency, whereas the subsequent relaxation occurs through a non-electrical mechanism. 3) The characteristic response to $10^{-7}M$ ouabain is resulted not from the action on intrinsic nerve terminal, but from its direct action on the membrane of smooth muscle cells. 4) The phasic contractions superimposed on the increased basal tone at the concentration of $10^{-4}M$ vanadate is resulted from the continuous spike discharge with membrane depolarization, of which mechanism remains unknown. 5) The inhibitory action of ouabain on the electrically induced contractions suggests that the increasein intracellular Na in some way inhibits the electrically induced $Ca^{2+}$ influx. The mechanism of vanadate action on the induced contractions remains unknown.

  • PDF

Effect of Adenosine on the Mechanical and Electrical Activities of Guinea-pig Stomach (기니피그 위 평활근의 기계적 및 전기적 활동에 대한 아데노신 효과)

  • Kim, Heui-Jeen;Ko, Kwang-Wook;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.225-239
    • /
    • 1987
  • The effects of adenosine on the mechanical contractions and electrical activities were investigated in guinea-pig stomach. Spontaneous contractions of the antral region were recorded with force transducer, and the phasic contractions of fundic region were induced by electrical field stimulation. Electrical responses of smocth muscle cells were recored using glass capillary microelectrodes filled with 3M-KCl. Field stimulation was applied transmurally by using a pair of platinum wire (0.5 mm in diameter) placed on both sides of tissue. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows. 1) Adenosine suppressed the spontaneous contractions of antrum in a dose-dependent manner. 2) The inhibitory effect on antral spontaneous contractions was not influenced by the administration of guanethidine $(5{\times}10^{-6}\;M)$ and atropine $10^{-6}\;M$, or in the presence of dipyridamole $10^{-7}\;M$. 3) The phasic contractions of fundus induced by electrical field stimulation, which disappeared rapidly by the addition of tetrodotoxin $(3{\times}10^{-7}\;M)$, were potentiated by adenosine in the presence of guanethidine. 4) Adenosine decreased the amplitude and the maximum rate of rise of slow waves, and the increased amplitude and rate of rise evoked in the high calcium solution or in the presence of TEA were decreased by adenosine. 5) The non-adrenergic, non-cholinergic inhibitory junction potential (IJP) was inhibited by adenosine in the antral region, while the excitatory junction potential (EJP) in the fundic region was potentiated. From the above results, the following conclusions could be made. 1) Adenosine suppresses the spontaneous contractions of antrum strip by the decrease in amplitude and rate of rise of slow waves. 2) The release of neurotransmitter(s) from non-adrenergic, non-cholinergic nerve terminals is inhibited by adenosine.

  • PDF

Effect of $Ca^{2+}$ and $Ca^{2+}-antagonists$ on the Spontaneous Contractions and Electrical Activities of Guinea-pig Stomach (기니피그 위 평활근의 자발적 수축과 전기적 활동에 대한 $Ca^{2+}$$Ca^{2+}$-길항제 영향)

  • Rhie, Sang-Ho;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.241-257
    • /
    • 1987
  • The effects of external $Ca^{2+}$ and $Ca^{2+}-antagonists$ on the spontaneous contractions and electrical activities were investigated in guinea-pig stomach in order to clarify the mechanism for the generation of slow waves. Electrical responses of circular smooth muscle cells were recorded using glass capillary microelectrodes filled with 3 M KCl. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) The amplitude of spontaneous contractions was maximal at around 2-4 mM $Ca^{2+}$, whereas their frequency was inversely related with external $Ca^{2+}$ within the range of 0.5 to 16 mM $Ca^{2+}$. 2) Verapamil suppressed the amplitude of spontaneous contraction in a dose-dependent manner, while the frequency of spontaneous contractions was almost not changed over the whole concentration of verapamil $(0.01{\sim}5\;mg/l)$. 3) Manganese increased both the amplitude and the frequency of spontaneous contractions dose-dependently in low $Mn^{2+}$ (below 0.05 mM $Mn^{2+}$), while their amplitude and frequency were decreased in high $Mn^{2+}$ (above 0.1 mM $Mn^{2+}$). 4) The ampltude and maximum rate of rise of slow waves were incrased in high $Ca^{2+}$ solution. In $Ca^{2+}-free$ solution, the spontaneous contractions recorded simultaneously with slow waves ceased and tonic contraction ($Ca^{2+}-free$ contracture) was developed in parallel with membrane depolarization and the disappearance of slow waves. 5) Verapamil (1 mg/1) decreased the amplitude and maximum rate of rise of slow waves and it depolarized the membrane by about 6 mV, whereas the frequency of slow waves was not affected by verapamil. 6) Manganese showed different characteristic effects between low and high $Mn^{2+}$ on the slow waves: In low $Mn^{2+}$ (0.05 mM $Mn^{2+}$), the initial rapid increases and the subsequent gradual decreases in three parameters of slow waves (amplitude, rate of rise, and frequency of slow waves) till a new steady state were observed. However, in high $Mn^{2+}$ (0.5 mM $Mn^{2+}$) slow waves disappeared and membrane was depolarized. From the above results, the following conclusions could be made: 1) $Ca^{2+}$ is necessary for a generation of the slow waves, even though it is small amount. 2) Verapamil suppresses the spontaneous contractions of gastric antral strip by the decreases in amplitude and maximum rate of rise of slow waves, while this drug does not block the $Ca^{2+}-channel$ involved in the generation of slow waves. 3) Manganese has dual actions on the $Ca^{2+}-channels$; the $Ca^{2+}-channel$ involved in the generation of slow waves (or Na-Ca exchange system) or the channel for the generation of spike potentials are stimulated by a low concentration of $Mn^{2+}$, while both the $Ca^{2+}$. Channels are blocked by high concentration of $Mn^{2+}$.

  • PDF

Relaxant Effect of Spermidine on Acethylcholine and High $K^+$-induced Gastric Contractions of Guinea-Pig

  • Kim, Young-Chul;Sim, Jae-Hoon;Choi, Woong;Kim, Chan-Hyung;You, Ra-Young;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.59-64
    • /
    • 2008
  • In our previous study, we found that spermine and putrescine inhibited spontaneous and acetylcholine (ACh)-induced contractions of guinea-pig stomach via inhibition of L-type voltage- dependent calcium current ($VDCC_L$). In this study, we also studied the effect of spermidine on mechanical contractions and calcium channel current ($I_{Ba}$), and then compared its effects to those by spermine and putrescine. Spermidine inhibited spontaneous contraction of the gastric smooth muscle in a concentration-dependent manner ($IC_{50}=1.1{\pm}0.11mM$). Relationship between inhibition of contraction and calcium current by spermidine was studied using 50 mM high $K^+$-induced contraction: Spermidine (5 mM) significantly reduced high $K^+$ (50 mM)-induced contraction to 37${\pm}$4.7% of the control (p<0.05), and inhibitory effect of spermidine on $I_{Ba}$ was also observed at a wide range of test potential in current/voltage (I/V) relationship. Pre- and post-application of spermidine (5 mM) also significantly inhibited carbachol (CCh) and ACh-induced initial and phasic contractions. Finally, caffeine (10 mM)-induced contraction which is activated by $Ca^{2+}$-induced $Ca^{2+}$ release (CICR), was also inhibited by pretreatment of spermidine (5 mM). These findings suggest that spermidine inhibits spontaneous and CCh-induced contraction via inhibition of $VDCC_L$ and $Ca^{2+}$ releasing mechanism in guinea-pig stomach.

Neurotensin Enhances Gastric Motility in Antral Circular Muscle Strip of Guinea-pig

  • Koh, Tae-Yong;Kim, Sung-Joon;Lee, Sang-Jin;Kang, Tong-Mook;Jun, Jae-Yeoul;Sim, Jae-Hoon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.227-234
    • /
    • 2000
  • Many reports suggest that neurotensin (NT) in the gastrointestinal tract may play a possible role as a neurotransmitter, a circulating hormone, or a modulator of motor activity. NT exerts various actions in the intestine; it produces contractile and relaxant responses in intestinal smooth muscle. This study was designed to investigate the effect of NT on motility of antral circular muscle strips in guinea-pig stomach. To assess the role of $Ca^{2+}$ influx in underlying mechanism, slow waves were simultaneously recorded with spontaneous contractions using conventional intracellular microelectrode technique. At the concentration of $10^{-7}$ M, where NT showed maximum response, NT enhanced the magnitude $(863{\pm}198%,\;mean\;SEM,\;n=13)$ and the frequency $(154{\pm}10.3%,\;n=11)$ of spontaneous contractions. NT evoked a slight hyperpolarization of membrane potential, tall and steep slow waves with abortive spikes $(278{\pm}50%,\;n=4).$ These effects were not affected by atropine $(2\;{\mu}M),$ guanethidine $(2\;{\mu}M)$ and tetrodotoxin (0.2μM). NT-induced contractile responses were abolished in $Ca^{2+}-free$ solution and reduced greatly to near abolition by $10\;{\mu}M$ of verapamil or 0.2 mM of $CdCl_2.$ Verapamil attenuated the effects of NT on frequency and amplitude of the slow waves. Taken together, these results indicate that NT enhances contractility in guinea-pig gastric antral circular muscle and $Ca^{2+}$ influx through the voltage-operated $Ca^{2+}$ channel appears to play an important role in the NT-induced contractile mechanism.

  • PDF