• Title/Summary/Keyword: Spoiler

Search Result 56, Processing Time 0.027 seconds

Skin Dose Distribution with Spoiler of 6 MV X-ray for Head and Neck Tumor (두경부암 치료를 위한 6 MV X-선 산란판의 제작과 산란분포 측정)

  • Lee Kyung-Ja;Chu Sung Sil
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.339-345
    • /
    • 1996
  • Purpose : This study was performed for adequate irradiating tumor area when 6 MV linear accerelator photon was used to treat the head and neck tumor. The skin surface dose and maximum build-up region was measured by using a spoiler which was located between skin surface and collimator. Methods : A spoiler was made of tissue equivalent material and the skin surface dose and maximum build-up region was measured varing with field size, thickness of spoiler and interval between skin and collimator. The results of skin surface dose and maximum build-up dose was represented as a build-up ratio and it was compared with dose distribution by using a bolus. Results : The skin surface dose was increased with appling spoiler and decreased by distance of the skin-spoiler separation. The maxium build-up region was 1.5 cm below the skin surface and it was markedly decreased near the skin surface. By using a 1.0-cm thickness spoiler, Dmax moved to 5, 10.2, 12.3 13.9 and 14.8 mm from the skin surface by separation of the spoiler from the skin 0, 5, 10, 15. 20 cm, respectively. Conclusion : The skin surface dose was increased and maximum build-up region was moved to the surface by using a spoiler. Therefore spoiler was useful in treating by high energy photon in the head and neck tumor.

  • PDF

Computational Investigations of Adverse Effects of Deploying Spoilers on Airfoil Aerodynamic Characteristics (스포일러 동적 작동에 따른 에어포일 공력특성 역전현상 연구)

  • Chung, Hyoung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.335-342
    • /
    • 2020
  • Tailless aircraft designed for stealth efficiency uses spoilers instead of rudders for the directional control. When the spoiler is rapidly deployed, highly nonlinear and unsteady aerodynamic characteristics can be generated, resulting in adverse effects on aircraft flight performance. This paper investigates the aerodynamic characteristics of an airfoil with moving spoiler using dynamic mesh CFD technique. The effects of spoiler operation speed, mounting location, and deployment scheduling are analyzed to reduce the adverse effects of the spoiler's dynamic operation. The results shows that the adverse effects of dynamic spoiler can be reduced by appropriate selection of the spoiler mounting location and deployment scheduling.

Self-Burial Structure of the Pipeline with a Spoiler on Seabed (해저지반에 설치된 스포일러 부착형 파이프라인의 자가매설 기능분석)

  • Lee, Woo-Dong;Hur, Dong-Soo;Kim, Han-Sol;Jo, Hyo-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.310-319
    • /
    • 2016
  • If a spoiler was attached to the pipeline investigated in a previous study, a strong flow and vortex at the lower part caused scouring and thus an asymmetric pressure distribution, which assisted in the analysis of the self-burial structure where a down force was applied to the pipe. However, only the fluid-pipe interaction was considered, excluding the medium (seabed), when practically burying the pipeline. Thus, this study applied a numerical model (LES-WASS-2D) to directly analyze the non-linear interactions among the fluid, pipe, and seabed in order to perform numerical simulations of a pipeline with a spoiler installed on the seabed. This allowed the self-burial mechanism of a pipeline with a spoiler to be analyzed in the same context as the previous study that considered only the fluid-pipe interaction. However, when a pipeline was installed on the seabed, a strong flow and vortex were found at the front of the bottom, and a spoiler accelerated the fluid resistances. This hydraulic phenomenon will reinforce the scouring and down force on the pipeline. In the general consideration of the numerical analysis results by the specifications and arrangements of the spoiler, a pipeline with a spoiler was found to be the most effective for the self-burial function.

Sensitivity analysis of transonic flow past a NASA airfoil/wing with spoiler deployments

  • AKuzmin, lexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.232-240
    • /
    • 2014
  • Transonic flow past a NASA SC(2)-0710 airfoil with deployments of a spoiler up to $6^{\circ}$ was studied numerically. We consider angles of attack from $-0.6^{\circ}$ to $0.6^{\circ}$ and free-stream Mach numbers from 0.81 to 0.86. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations were obtained with a finite-volume solver using several turbulence models. Both stationary and time-dependent deployments of the spoiler were examined. The study revealed the existence of narrow bands of the Mach number, angle of attack, and spoiler deflection angle, in which the flow was extremely sensitive to small perturbations. Simulations of 3D flow past a swept wing confirmed the flow sensitivity to small perturbations of boundary conditions.

A Numerical Investigation on the Wake Flow Characteristics and Rear-Spoiler Effect of a Large-Sized Bus Body (대형버스 바디모델의 후류특성 및 후미 스포일러 효과에 관한 해석적 고찰)

  • 김민호;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.126-133
    • /
    • 2003
  • The aerodynamic characteristics of automobiles have received substantial interest recently. Detailed knowledge of the vehicle aerodynamics is essential to improve fuel efficiency and enhance stability at high-speed cruising. In this study, a numerical simulation has been carried out for three-dimensional turbulent flows around a commercial bus body. Also, the effect of rear-spoiler attached at rear end of bus body was investigated. The Wavier-Stokes equation is solved with SIMPLE method in general curvilinear coordinates system. RNG $k-\varepsilon$ turbulence model with the MARS scheme was used for the evaluating aerodynamic forces, velocity and pressure distribution. The results showed details of the three-dimensional wake flow in the immediate rear of bus body and the effect of rear-spoiler on the wake structure. A maximum of 14% reduction in drag coefficient was achieved for a model with a rear-spoiler.

A Change of Three-Dimensional Vortical Structures by an Air Spoiler in the Wake of a Road Vehicle (에어 스포일러 장착에 따른 자동차 후류 3차원 와 구조의 변화)

  • Kim Jin-Seok;Sung Jae-Yong;Kim Sung-Cho;Kim Jeong-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.56-61
    • /
    • 2006
  • A change of three-dimensional vortical structures on the wake behind a road vehicle has been investigated according to the existence of an air spoiler. To reconstruct the three-dimensional velocity fields, two-dimensional PIV(particle image velocimetry) measurements were performed for lots of the x-y, y-z and z-x planes. Since the isovorticity surface does not represent exactly the vortical structures within the recirculation region due to strong shear flows, the velocity component normal to the x-y plane is obtained by interpolating those velocities in the z-x plane. Then, the ${\lambda}_2-definition$ is applied to visualize the vortices in the recirculation region. As a result, it is found that the air spoiler weakens C-pillar vortices and produces strong wing-tip vortices. Inside the recirculation region, the height and volume of coherent vortices are increased relatively when an air spoiler is equipped. On the other hand, two small coherent vortices are observed in case that an air spoiler is absent.

  • PDF

The Variation of Surface Dose by Beam Spoiler in 10 MV Photon Beam from Linear Accelerator (선형가속기 10 MV 광자선에서 산란판(Beam Spoiler) 사용 시 표면선량 변화)

  • Bae, Seong-Cheol;Kim, Jun-Ho;Lee, Choul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Purpose: The purpose of this study is to find a optimal beam spoiler condition on the dose distribution near the surface, when treating a squamous cell carcinoma of the head and neck and a lymphatic region with 10 MV photon beam. The use of a optimal spoiler allows elivering high dose to a superficial tumor volume, while maintaining the skin-sparing effect in the area between the surface to the depth of 0.4 cm. Materials and Methods: The lucite beam spoiler, which were a tissue equivalent, were made and placed between the surface and the photon collimators of linear accelerator. The surface-dose, the dose at the depth of 0.4 cm, and the maximum dose at the dmax were measured with a parallel-plate ionization chamber for $5{\times}5cm\;to\;30{\times}30cm^2$ field sizes using lucite spoilers with different thicknesses at varying skin-to-spoiler separation (SSS). In the same condition, the dose was measured with bolus and compared with beam spoiler. Results: The spoiler increased the surface and build-up dose and shifted the depth of maximum dose toward the surface. With a 10 MV x-ray beam and a optimal beam spoiler when treating a patient, a similer build-up dose with a 6 MV photon beam could be achieved, while maintaining a certain amount of skin spring. But it was provided higher surface dose under SSS of less than 5 cm, the spoiler thickness of more than 1.8 cm or more, and larger field size than $20{\times}20cm^2$ provided higher surface dose like bolus and obliterated the spin-sparing effect. the effects of the beam spoiler on beam profile was reduced with increasing depths. Conclusion: The lucite spoiler allowed using of a 10 MV photon beam for the radiation treatment of head and neck caner by yielding secondary scattered electron on the surface. The dose at superficial depth was increased and the depth of maximum dose was moved to near the skin surface. Spoiling the 10 MV x-ray beam resulted in treatment plans that maintained dose homogeneity without the consequence of increased skin reaction or treat volume underdose for regions near the skin surface. In this, the optimal spoiler thickeness of 1.2 cm and 1.8 cm were found at SSS of 7 cm for $10{\times}10cm^2$ field. The surface doses were measured 60% and 64% respectively. In addition, It showed so optimal that 94% and 94% at the depth of 0.4 cm and dmax respectively.

  • PDF

Analysis of Surface Dose Refer to Distance between Beam Spoiler and Patient in Total Body Irradiation (전신방사선조사(Total Body Irradiation) 시 Beam Spoiler와 환자 간의 거리에 관한 고찰)

  • Choi, Jong-Hwan;Kim, Jong-Sik;Choi, Ji-Min;Shin, Eun-Hyuk;Song, Ki-Won;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 2007
  • Purpose: Total body irradiation is used to kill the total malignant cell and for immunosuppression component of preparatory regimens for bone-marrow restitution of patients. Beam spoiler is used to increase the dose to the superficial tissues. This paper finds the property of the distance between beam spoiler and patient. Materials and Methods: Set-up conditions are 6 MV-Xray, 300 MU, SAD = 400 cm, field size = $40{\times}40cm^2$. The parallel plate chamber located in surface, midpoint and exit of solid water phantom. The surface dose is measured while the distance between beam spoiler and patient is altered. Because it should be found proper distance. The solid water phantom is fixer and beam spoiler is moving. Results: Central dose of phantom is 10.7 cGy and exit dose is 6.7 cGy. In case of distance of 50 cm to 60 cm between beam spoiler and solid water phantom, incidence dose is $14.58{\sim}14.92cGy$. Therefore, The surface dose was measured $99.4{\sim}101%$ with got near most to the prescription dose. Conclusion: In clinical case, distance between beam spoiler and patient affect surface dose. If once $50{\sim}60cm$ of distance between beam spoiler and patient, surface dose of patient got near prescription dose. It would be taken distance between beam spoiler and patient into account in clinical therapy.

  • PDF

Wing Spoiler 전개 각도에 의한 공력특성 변화와 Lift Dumping Effect 분석

  • Lee, Yeong-Jun;Kim, Tae-Gyun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.610-613
    • /
    • 2016
  • 항공기의 착륙 과정에서 지면효과에 의해 기체가 원하는 위치에 착지하지 못하는 경우가 있다. 이러한 현상들로 인해 항공기의 착륙 실패 또는 활주로 이탈로 인한 인명피해로 이어질 수 있다. 본 연구에서는 이러한 착륙과정에서 쓰이는 날개의 부품중 하나인 Spoiler에 대한 공력 해석을 EDISON 전산열유체 시스템을 이용하여 진행해 보았다. 특히 Spoiler의 전개 각도를 다양하게 변화시켜가며 그 전개 각도에 의한 Lift dumping effect에 초점을 맞추어 연구를 진행하였다. 예상과 동일하게 전개각도가 커질수록 양력은 감소하였으며 항력의 경우 선형적으로 증가하는 양상을 보였다. 또한 전개각도가 20도보다 커지는 구간부터는 양력이 음수로 작아지는 현상을 확인할 수 있었다.

  • PDF

Flow Analysis due to the Configuration of Automotive Spoiler (자동차 스포일러의 형상에 따른 유동해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.677-683
    • /
    • 2016
  • In this study, the pressures due to air resistances on the models of 1, 2, 3 and 4 as the automotive bodies grafted on various spoilers are investigated through the flow analysis. Model 1 has the flat type and model 2 has the shape that a flat plane is projected. Model 3 is attached with the slanted plate and model 4 has the shape that two slanted plates are installed on both sides. At the flow streams on the models of 1, 2, 3 and 4, the flow velocities are shown to become highest above the roofs of automotive bodies. The maximum flow velocities are also shown at the beginning points at the roofs of car bodies on the side planes of automotive bodies. The maximum pressures of 102,500 to 102,553 Pa as air resistances are shown at the bumpers of the front car bodies. The flow velocities on the inlet and middle planes become nearly same at the models of 1, 2, 3 and 4. But these velocities on the inlet plane at model 2 projected with the spoiler of flat plate become lower than the models of 1, 3 and 4. The air streams throughout the models become uniform at all models. The flow stream is shown most uniformly at model 2 projected with the spoiler of flat plate. But the flow stream is shown most irregularly at model 3 projected with the spoiler of slanting plate. By using the result of this flow analysis, it is thought to reduce the power of car effectively in driving by changing the configuration of automotive spoiler.