• Title/Summary/Keyword: Spodoprera litura

Search Result 2, Processing Time 0.014 seconds

Effects of Field Application of Spodoptera litura Nucleopolyhedrovirus to Control S. litura in Chrysanthemum (국화 포장에서 담배거세미나방 방제를 위한 핵다각체병바이러스 살포효과)

  • 김선곤;박종대;김도익;임대준;김규진;유용만
    • Korean journal of applied entomology
    • /
    • v.42 no.2
    • /
    • pp.153-157
    • /
    • 2003
  • This experiment was conducted to investigate control effect of Spodoptera litura using nucleopolyhedrovirus in chrysanthemum seedlings of open field and plastic house. Values of LT$_{50}$ of treatment 1.0$\times$10$^{6.8}$ PIBs/ml were 6.2-5.1 days in open field and 6.9-5.4 days in plastic house. Values of LT$_{50}$ and LT$_{95}$ were shorter in open field than in plastic house. Cumulative mortality was 100% in 1.0$\times$10$^{7.8}$ PIBs/ml and also higher in open field than in plastic house. In chrysanthemum field, organic synthetic insecticide (endosulfan EC) killed S. litura larvae in 2 days after application. Motality of S. litura larva inoculated with S. litura nucleopolyhedrovirus (SINPV) 1.0$\times$10$^{6.8}$ PIBs/ml was found out from 4 days after application and maintained during 14 days. Protection values of with SINPV 1.0$\times$10$^{8}$ PIBs/ml after 16 days were 94.0% and 89.4% in open field and plastic house, respectively, and those of endosulfan 350 ppm were 91.4% and 88.6%, respectively.

An Edible Alginate Microcapsulation of Entomopathogenic Nematode, Steinernema carpocapsae (알지닌캡슐을 이용한 곤충병원선충(Steinernema carpocapsae)의 섭식유도형 제제화 기술)

  • 김용균;이승화;유용만;한상찬
    • Korean journal of applied entomology
    • /
    • v.42 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • Field application of the entomopathogenic nematode, Steinernema carpncapsae, is limited by its susceptibility to UV irradiation and desiccation especially at leaf spray control. This study was conducted to develop the control technique using alginate biocapsulation of the nematodes against the beet armyworm, Spodoprera exigua and the tobacco cutworm, Sp. litura that are normally infesting hosts above ground level. The alginate capsules including infective juveniles gave significant feeding toxicities to the larvae of the two lepidopteran species. The lethality followed a typical sigmoid dose-mortality pattern with increase of the nematode densities embedded in the capsules. Moisture content in the capsule was critical to the survival of the infective juveniles. More than 80% nematodes could survive above 10% moisture content remained in the capsule. Remaining moisture content within the capsule was dependent on relative humidity, ambient temperature, and capsule size, but not on citric acid reaction time during capsule formation. More than 80% of infective juveniles in the alginate capsules could survive in distilled water at 15$^{\circ}C$ for 60 days. When these nematode capsules containing welsh onion extract as another phagostimulant were applied on the 3rd instar larvae of Sp. exigua infesting peanut plants, they resulted in about 90% control efficacy. These results indicate that the alginate capsulation can be used for leaf-spray agent of the entomopathogenic nematodes as well as for improved storage purpose.