• Title/Summary/Keyword: Splitting ratio

Search Result 252, Processing Time 0.029 seconds

Bias Reduction in Split Variable Selection in C4.5

  • Shin, Sung-Chul;Jeong, Yeon-Joo;Song, Moon Sup
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.627-635
    • /
    • 2003
  • In this short communication we discuss the bias problem of C4.5 in split variable selection and suggest a method to reduce the variable selection bias among categorical predictor variables. A penalty proportional to the number of categories is applied to the splitting criterion gain of C4.5. The results of empirical comparisons show that the proposed modification of C4.5 reduces the size of classification trees.

Fast Voronoi Divider for VQ Code book Designs

  • Jang, Gang-Yi;Choi, Tae-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.34-38
    • /
    • 1996
  • In this paper, a new fast voronoi divider for vector quantization (VQ) is introduced, which results from Theorem that the nearest vectors in the sense of minimum mean square error(MMSE) have almost the same mean values of their elements. An improved splitting method for a VQ codebook design using the fast voronoi divider is also presented. Experimental results show that the new method reduces the complexity of training a VQ codebook several times with a high signal to noise ratio(SNR) using an appropriate extensive parameter of codebook.

  • PDF

A Study on Properties of Concrete Made of Natural and Crushed Sand in High Temperatures (자연모래와 부순모래를 사용한 콘크리트의 고온 하에서 특성연구)

  • Kim, Joo-Seok;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • The main object of this paper is to investigate the effects of high temperatures on the physical and mechanical properties of natural sand concrete(NSC) and crushed sand concrete(CSC). Test samples were exposed to high temperature ranging from $200^{\circ}C$ to $800^{\circ}C$. After exposure, various tests were conducted. Color image analysis and weight losses were determined and compressive strength test and splitting tensile strength test were conducted. The results indicated that weight losses increased as exposure temperature increased with comparable decreasing rate. The results also showed that compressive strength and splitting tensile strength and modulus of elasticity decreased as exposure temperature increased. The results also showed that residual compressive strength of NSC decreased more drastically than that of CSC at $200^{\circ}C$ and $400^{\circ}C$. Residual splitting tensile strength of NSC decreased more than that of CSC at $200^{\circ}C$, while NSC and CSC showed comparable residual strength ratio at $800^{\circ}C$.

Performance Enhancement Study Using Passive Control of Shock-Boundary Layer Interaction in a Transonic/Supersonic Compressor Cascade (천음속/초음속 압축기 익렬에서 Shock-Boundary Layer 상호작용의 수동적 제어에 의한 성능 향상 연구)

  • Kim, Sang-Deok;Gwon, Chang-O;Sa, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2944-2952
    • /
    • 1996
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 transoni $c^ersonic compressor cascade flow. First, the general characteristics of baseline cascade flow were analyzed. At freestream Mach n.1.612 and exit/inlet pressure ratio 2.15, the results from current laminar flow were compared well in suction surface with the experiment; however, not well in pressure surface. Second, numerical study of the transoni $c^ersonic compressor cascade flow demonstrated the effectiveness of a passive control by the various size cavities. A cavity under the shock foot point at the suction surface of the blades was used as a passive control. The passive control of shock-boundary layer interaction by a cavity reduced total pressure losses. The effect of cavity length and depth was studied. The total pressure loss was reduced by about 10% and the isentropic efficiency was improved slightly. The effect of cavity depth in current study(d/l = 0.05, 0.02) was not found strong. Further adequate turbulence modeling and TVD schemes would help to capture the shock more accurately and increase the effectiveness of the current shock-boundary layer interaction study using upwind flux difference splitting computational methods.thods.

Analysis of Factors Influencing Fire Damage to Concrete Using Nonlinear Resonance Vibration Method (비선형 공진기법을 이용한 콘크리트의 화재 손상 영향인자 분석)

  • Park, Gang-Kyu;Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.150-156
    • /
    • 2015
  • In this study, the effects of different mix proportions and fire scenarios (exposure temperatures and post-fire-curing periods) on fire-damaged concrete were analyzed using a nonlinear resonance vibration method based on nonlinear acoustics. The hysteretic nonlinearity parameter was obtained, which can sensitively reflect the damage level of fire-damaged concrete. In addition, a splitting tensile strength test was performed on each fire-damaged specimen to evaluate the residual property. Using the results, a prediction model for estimating the residual strength of fire-damaged concrete was proposed on the basis of the correlation between the hysteretic nonlinearity parameter and the ratio of splitting tensile strength.

Power Splitting of Plasmonic Directional Couplers with Nano-scale Three Channels (나노 크기의 세 채널 플라즈마 방향성 결합기의 전력분배)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.47-52
    • /
    • 2011
  • Directional couplers based on plasmonic waveguides with nano-scale three channels are designed by utilizing mode coupling effect as well as rib-guiding structure. Longitudinal modal transmission-line theory(L-MTLT) is used for simulating the light propagation and optimizing the design parameters. The designed plasmonic coupler operating as power splitter has nano-scale size of about 200~250 nm width. In order to achieve the desired power splitting ratio, the refractive index of guiding modes is evaluated along the width variation of center channel. Finally, a power splitter based on triple rib directional coupler, which ensures maximum power transfer from one outermost guide to the other outermost guide, is designed.

Resource allocation in downlink SWIPT-based cooperative NOMA systems

  • Wang, Longqi;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.20-39
    • /
    • 2020
  • This paper considers a downlink multi-carrier cooperative non-orthogonal multiple access (NOMA) transmission, where no direct link exists between the far user and the base station (BS), and the communication between them only relies on the assist of the near user. Firstly, the BS sends a superimposed signal of the far and the near user to the near user, and then the near user adopts simultaneous wireless information and power transfer (SWIPT) to split the received superimposed signal into two portions for energy harvesting and information decoding respectively. Afterwards, the near user forwards the signal of the far user by utilizing the harvested energy. A minimum data is required to ensure the quality of service (QoS) of the far user. We jointly optimize power allocation, subcarrier allocation, time allocation, the power allocation (PA) coefficient and the power splitting (PS) ratio to maximize the number of data bits received at the near user under the energy causality constraint, the minimum data constraint and the transmission power constraint. The block-coordinate descent method and the Lagrange duality method are used to obtain a suboptimal solution of this optimization problem. In the final simulation results, the superiority of the proposed NOMA scheme is confirmed compared with the benchmark NOMA schemes and the orthogonal multiple access (OMA) scheme.

Bond-Strengthening Hooks for RC Members with High Strength Spirals

  • Kim Kil-Hee;Sato Yuichi
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.835-842
    • /
    • 2005
  • This paper presents an experimental investigation of bond-strengthening hooks as a new method to increase bond strength along flexural reinforcing bars in reinforced concrete (RC) beams and columns. The RC members, which consisted of 1,300 MPa-class spirals as shear reinforcement, often suffered from bond splitting failure. The proposed method attempts to increase confining stiffness around the flexural bars by placing U-shaped hooks and to prevent premature bond splitting failure. Twelve specimens with varied amounts and sizes of the hooks were prepared to verify the strengthening effectiveness under monotonic and cyclic loading conditions. The test result indicated that the hooks increased the bond strength along the flexural bars although the strengthening effectiveness was limited by effective reinforcement ratio $P_{be}$. This limit is determined by size of stress-transmitting zones of concrete around anchors of the hooks. Anchors of the hooks are recommended to be longer than twelve times the hook diameter and inserted deeper than a quarter of the member depth (D/4). Proposed design equations provide modest estimates of the shear strengths.

The Characteristics of Solar Thermochemical Methane Reforming using Ferrite-based Metal Oxides (페라이트계 금속산화물을 이용한 태양 열화학 메탄 개질 특성)

  • Cha, Kwang-Seo;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seok;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.45-48
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syn-gas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums and $WO_{3}/ZrO_{2}$. Thermochemical 2-step methane reforming were accomplished at 900 $^{\circ}C$(syn-gas production step) and 800 $^{\circ}C$(water-splitting step). In syn-gas production step, it appeared carbon deposition on metal oxides with increasing react ion time. Various mediums showed the different starting point of carbon deposition each other. To minimize the carbon deposition, the reaction time was controlled before the starting point of carbon deposition. As a result, $CO_{x}$ were not evolved in water-splitting step, Among the various metal oxides, $Mn-ferrite/ZrO_{2}$ showed high reactivity, proper $H_{2}/CO$ ratio, high selectivity of undesired $CO_{2}$ and high evolution of $H_{2}$.

  • PDF

Effects of Aggregate and Curing Temperature on Strength Development of UP-MMA based Polymer Mortar under Sub-Zero Temperature (영하온도에서 UP-MMA 폴리머 모르타르의 강도 발현에 미치는 골재 및 양생온도의 영향)

  • Yeon, Kyu-Seok;Kim, Yong-Seong;Cha, Jin-Yun;Son, Seung-Wan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • In this paper, the effects of aggregate and curing temperature on strength development characteristics of UP (Unsaturated Polyester)-MMA (Methyl Methacrylate) based polymer mortar under sub-zero temperature are experimentally investigated to provide a criterion for repair and production of precast products. The result showed that the setting time of the binder was 4 minutes at $20^{\circ}C$ whereas 35 minutes at $-20^{\circ}C$. The result also revealed that the compressive, flexural, and splitting tensile strengths of UP-MMA based polymer mortar significantly decreased as the aggregate and curing temperatures decreased. However, sufficient strengths which can be implemented in actual practices -36.6 MPa of compressive strength, 6.11 MPa of flexural strength, and 5.81 MPa of splitting tensile strength - were obtained even though both aggregate and curing temperatures were $-20^{\circ}C$. Strength development of polymer mortar is largely affected by curing temperature rather than aggregate temperature. It was found that the effects of aggregate temperature on strength development become smaller as the curing temperature becomes lower. Also, toughness, a ratio of compressive strength to flexural strength, increased from 3.5 to 5.9 as both aggregate and curing temperatures decreased from $20^{\circ}C$ to $-20^{\circ}C$.