• Title/Summary/Keyword: Split-flow

Search Result 185, Processing Time 0.032 seconds

An Experimental Study on Improved Fuel Economy and Lower Exhaust Emissions of New Automotive Engine adopting Split Cooling System

  • Oh, C.S.;Lee, J.H.;Shin, S.Y.;Kim, W.T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.407-408
    • /
    • 2002
  • This paper presents a split cooling system for a new inline 4-cylinder automotive engine. The split cooling system circulates coolant to the cylinder head and cylinder block separately. The coolant flow in the cylinder block is controlled by a $2^{nd}$ Thermostat installed at the outlet of cylinder block. The $2^{nd}$ thermostat closes when the coolant temperature is low. And this makes the coolant flow in cylinder block nearly stagnant, thereby reducing the coolant-side heat transfer coefficient and raising cylinder bore temperature. The $2^{nd}$ thermostat starts to open when the coolant temperature reaches a specified temperature. The test results on engine dynamometer show improved fuel economy and lower exhaust emission which result from the decrease in friction works and cooling loss. Also, several vehicle tests, with application of the new engine have been performed. Fuel economy improvement of 0.5{\sim}2.0%$ yields from different test modes and details are discussed in this paper.

  • PDF

Numerical Analysis of Flow Distribution inside a Fuel Assembly with Split-type Mixing Vanes for the Development of Regulatory Guideline on the Applicability of CFD Software (전산유체역학 소프트웨어 적용성에 관한 규제 지침 개발을 위한 분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.538-550
    • /
    • 2017
  • In a PWR (Pressurized Water Reactor), the appropriate heat removal from the surface of fuel rod bundle is important for ensuring thermal margins and safety. Although many CFD (Computational Fluid Dynamics) software have been used to predict complex flows inside fuel assemblies with mixing vanes, there is no domestic regulatory guideline for the comprehensive evaluation of CFD software. Therefore, from the nuclear regulatory perspective, it is necessary to perform the systematic assessment and prepare the domestic regulatory guideline for checking whether valid CFD software is used for nuclear safety problems. In this study, to provide systematic evaluation and guidance on the applicability of CFD software to the domestic nuclear safety area, the results of the sensitivity analysis for the effect of the discretization scheme accuracy for the convection terms and turbulence models, which are main factors that contribute to the uncertainty in the calculation of the nuclear safety problems, on the prediction performance for the turbulent flow distribution inside the fuel assembly with split-type mixing vanes were explained.

Flow Distribution and Pressure Loss in Subchannels of a Wire-Wrapped 37-pin Rod Bundle for a Sodium-Cooled Fast Reactor

  • Chang, Seok-Kyu;Euh, Dong-Jin;Choi, Hae Seob;Kim, Hyungmo;Choi, Sun Rock;Lee, Hyeong-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.376-385
    • /
    • 2016
  • A hexagonally arrayed 37-pin wire-wrapped rod bundle has been chosen to provide the experimental data of the pressure loss and flow rate in subchannels for validating subchannel analysis codes for the sodium-cooled fast reactor core thermal/hydraulic design. The iso-kinetic sampling method has been adopted to measure the flow rate at subchannels, and newly designed sampling probes which preserve the flow area of subchannels have been devised. Experimental tests have been performed at 20-115% of the nominal flow rate and $60^{\circ}C$ (equivalent to Re ~ 37,100) at the inlet of the test rig. The pressure loss data in three measured subchannels were almost identical regardless of the subchannel locations. The flow rate at each type of subchannel was identified and the flow split factors were evaluated from the measured data. The predicted correlations and the computational fluid dynamics results agreed reasonably with the experimental data.

Traffic Classification Using Machine Learning Algorithms in Practical Network Monitoring Environments (실제 네트워크 모니터링 환경에서의 ML 알고리즘을 이용한 트래픽 분류)

  • Jung, Kwang-Bon;Choi, Mi-Jung;Kim, Myung-Sup;Won, Young-J.;Hong, James W.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.707-718
    • /
    • 2008
  • The methodology of classifying traffics is changing from payload based or port based to machine learning based in order to overcome the dynamic changes of application's characteristics. However, current state of traffic classification using machine learning (ML) algorithms is ongoing under the offline environment. Specifically, most of the current works provide results of traffic classification using cross validation as a test method. Also, they show classification results based on traffic flows. However, these traffic classification results are not useful for practical environments of the network traffic monitoring. This paper compares the classification results using cross validation with those of using split validation as the test method. Also, this paper compares the classification results based on flow to those based on bytes. We classify network traffics by using various feature sets and machine learning algorithms such as J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, and NaiveBayes. In this paper, we find the best feature sets and the best ML algorithm for classifying traffics using the split validation.

An Experimental Study of Roughness Effects on the Turbulent Flow Downstream of a Backward-Facing Step (조도가 후향계단 주위의 난류유동에 미치는 영향에 대한 실험적 연구)

  • 김병남;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2083-2099
    • /
    • 1991
  • An experiment has been carried out to investigate the aerodynamic effect of surface roughness on the characteristics of the turbulent separation and reattaching flow downstream of a backward-facing step. The distributions of boundary layer parameters, forward-flow fraction and turbulent stresses in the region near the reattachment point are measured with a split film sensor. It is demonstrated that the streamwise distributions of the forward-flow fraction in the recirculation and reattachment regions are similar, independent of the roughness. The reattachment length is found to be only weakly affected by the roughness. It is also shown that the velocity profile on the rough surface approaches to that of the equilibrium turbulent boundary layer faster than that on the smooth surface in the redeveloping region after reattachment.

Numerical Analysis of Three Dimensional Turbulent Flow in a HVAC Duct (HVAC 덕트내의 3차원 난류유동에 관한 수치해석적 연구)

  • 정수진;류수열;김태훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.118-129
    • /
    • 1996
  • In this study, three dimensional flow analysis in a HVAC duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. It's well known that accuracy of computational predictions of flow heavily dependent on turbulent models and discritization method. Therefore, in this work, to assess the ability of turbulent models to predict characteristics of duct flow, three kinds of models, namely standard $k-\varepsilon$, RNG $k-\varepsilon$ and modified $k-\varepsilon$, containing parameter for the effect of streamline curvature were employed and validated one another by comparing with experimental data. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the futrue, adoption of CFD to design HVAC duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

Power Flow Analysis for Manufacturing of Planetary Gears in an 8-speed Automatic Transmission (II): 4-8 Speeds (8단 자동변속기의 유성기어 가공을 위한 동력 흐름 해석 (2) : 4-8단)

  • Lee, Kyoung-Jin;Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.57-65
    • /
    • 2016
  • The power flow of an 8-speed automatic transmission was analyzed using a lever analogy for the manufacturing of planetary gears. From the analysis, we found that the engine power was split between the first and second double-pinion planetary gears (DPPG1 and DPPG2), and was then passed to the DPPG3 for the fourth speed. For the fifth speed, the engine power was split between the DPPG1 and DPPG3. For the speeds 6-8, the engine power was passed only to SPPG2, while the seventh speed contained the power circulation.

Compound CVT realizing Power Circulation Mode and Power Split Mode (동력순환형과 동력분류형을 구현 가능한 복합형 무단변속기)

  • Choi Sang-Hoon;Kim Yeon-Su
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.96-103
    • /
    • 2005
  • We designed the compound CVT(Continuously Variable Transmissions) by combining power circulation mode and power split mode, which have been proposed for connecting 2K-H I differential gear to the V- belt type CVU(Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments for efficiency, speed ratio, power flow, and power transmission ratio. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

TAS: TCP-Aware Sub-layer over IEEE 802.11-based wireless LANs (IEEE 802.11 기반 무선랜에서 TCP 인진서브 계층 TAS)

  • Choi, Nak-Jung;Jung, Ha-Kyung;Ryu, Ji-Ho;Seok, Yong-Ho;Choi, Yang-Hee;Kwon, Tae-Kyoung
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.5
    • /
    • pp.355-368
    • /
    • 2006
  • This paper introduces a new split-TCP approach for improving TCP performance over IEEE 802.11-based wireless LANs. TCP over wireless LANs differently from wired networks is not aggressive, which is a fundamental reason for poor performance. Therefore, we propose TAS (TCP-Aware Sub-layer) to migigate this problem. Our scheme extends the split-connection approach that divides a connection into two different connections at a split point such as an access point (AP). Using TAS, a wireless node emulates TCP ACK packets using MAC ACK frames, instead of receiving real TCP ACK packets. We compared TAS with both normal TCP and I-TCP (Indirect TCP) by NS2 simulation. Results show that TAS achieves higher throughput, more fair resource allocation and, in power-saving mode, shorter delays.