• Title/Summary/Keyword: Split-Algorithm

Search Result 316, Processing Time 0.031 seconds

Prefix Cuttings for Packet Classification with Fast Updates

  • Han, Weitao;Yi, Peng;Tian, Le
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1442-1462
    • /
    • 2014
  • Packet classification is a key technology of the Internet for routers to classify the arriving packets into different flows according to the predefined rulesets. Previous packet classification algorithms have mainly focused on search speed and memory usage, while overlooking update performance. In this paper, we propose PreCuts, which can drastically improve the update speed. According to the characteristics of IP field, we implement three heuristics to build a 3-layer decision tree. In the first layer, we group the rules with the same highest byte of source and destination IP addresses. For the second layer, we cluster the rules which share the same IP prefix length. Finally, we use the heuristic of information entropy-based bit partition to choose some specific bits of IP prefix to split the ruleset into subsets. The heuristics of PreCuts will not introduce rule duplication and incremental update will not reduce the time and space performance. Using ClassBench, it is shown that compared with BRPS and EffiCuts, the proposed algorithm not only improves the time and space performance, but also greatly increases the update speed.

Coalition Formation Game Based Relay Selection and Frequency Sharing for Cooperative Relay Assisted Wireless D2D Networks with QoS Constraints

  • Niu, Jinxin;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5253-5270
    • /
    • 2016
  • With device-to-device (D2D) communications, an inactive user terminal can be utilized as a relay node to support multi-hop communication so that connective experience of the cell-edge user as well as the capacity of the whole system can be significantly improved. In this paper, we investigate the spectrum sharing for a cooperative relay assisted D2D communication underlying a cellular network. We formulate a joint relay selection and channel assignment problem to maximize the throughput of the system while guaranteeing the quality of service (QoS) requirements of cellular users (CUs) and D2D users (DUs). By exploiting coalition formation game theory, we propose two algorithms to solve the problem. The first algorithm is designed based on merge and split rules while the second one is developed based on single user's movement. Both of them are proved to be stable and convergent. Simulation results are presented to show the effectiveness of the proposed algorithms.

Sector-based Charging Schedule in Rechargeable Wireless Sensor Networks

  • Alkhalidi, Sadam;Wang, Dong;Al-Marhabi, Zaid A. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4301-4319
    • /
    • 2017
  • Adopting mobile chargers (MC) in rechargeable wireless sensors network (R-WSN) to recharge sensors can increase network efficiency (e.g., reduce MC travel distance per tour, reduce MC effort, and prolong WSN lifetime). In this study, we propose a mechanism to split the sensing field into partitions that may be equally spaced but differ in distance to the base station. Moreover, we focus on minimizing the MC effort by providing a new charging mechanism called the sector-based charging schedule (SBCS), which works to dispatch the MC in charging trips to the sector that sends many charging requests and suggesting an efficient sensor-charging algorithm. Specifically, we first utilize the high ability of the BS to divide the R-WSN field into sectors then it select the cluster head for each sector to reduce the intra-node communication. Second, we formulate the charging productivity as NP-hard problem and then conduct experimental simulations to evaluate the performance of the proposed mechanism. An extensive comparison is performed with other mechanisms. Experimental results demonstrate that the SBCS mechanism can prolong the lifetime of R-WSNs by increasing the charging productivity about 20% and reducing the MC effort by about 30%.

Automatic Detection of Texture-defects using Texture-periodicity and Jensen-Shannon Divergence

  • Asha, V.;Bhajantri, N.U.;Nagabhushan, P.
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.359-374
    • /
    • 2012
  • In this paper, we propose a new machine vision algorithm for automatic defect detection on patterned textures with the help of texture-periodicity and the Jensen-Shannon Divergence, which is a symmetrized and smoothed version of the Kullback-Leibler Divergence. Input defective images are split into several blocks of the same size as the size of the periodic unit of the image. Based on histograms of the periodic blocks, Jensen-Shannon Divergence measures are calculated for each periodic block with respect to itself and all other periodic blocks and a dissimilarity matrix is obtained. This dissimilarity matrix is utilized to get a matrix of true-metrics, which is later subjected to Ward's hierarchical clustering to automatically identify defective and defect-free blocks. Results from experiments on real fabric images belonging to 3 major wallpaper groups, namely, pmm, p2, and p4m with defects, show that the proposed method is robust in finding fabric defects with a very high success rates without any human intervention.

LDPC Decoding Algorithm for Multi-level Modulation Scheme (멀티레벨 변조방식에서 LDPC 복호 알고리즘)

  • Lee In-Ki;Jung Ji-Won;Choi Duk-Gun;Choi Ean-A;Chang Dae-Ig;Oh Duk-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.434-441
    • /
    • 2005
  • For LDPC decoding, received symbols are splitted bit by bit based using the received in-phase and quadrature components. The method of bit-splitting is affected on decoding performance because its method depend on distance over symbol constellation. Therefore this paper propose the bit split method using the sector information with sacrifice a little performance loss compared to Euclidean distance method. Futhermore DVB-S2 specification supports BC(Backward Compactible) mode which using the hierarchical modulation method, this paper also analyze the decoding performance according to deviation angle of 8PSK constellation for various LDPC coding rates.

A Cross Layer Protocol based on IEEE 802.15.4 for Improving Energy Efficiency (에너지 효율 개선을 위한 IEEE 802.15.4 기반의 Cross Layer Protocol)

  • Jeong, Pil-Seong;Kim, Hwa-Sung;Oh, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7A
    • /
    • pp.669-677
    • /
    • 2011
  • Superframe in IEEE 802.15.4 Standard is subdivided into an active period and an inactive period to reduce energy consumption. But communication nodes use same data transmission range in an active period, thus communication nodes spend a lot of energy to send data another nodes. In this paper, we proposed reduce energy consumption algorithm that nodes use different transmission power. Cordinator split transmission area into four group and transmit becon message to nodes. Nodes adjust transmission power according to becon message and wates lowe energy than normal nodes. We proposed energy-efficient cross layer protocol that have different PAN (Personal Area Network) by four range group.

Color Image Enhancement Using Local Area Histogram Equalization On Segmented Regions Via Watershed Transform

  • Lertpokanont, B.;Chitwong, S.;Cheevasuvit, F.;Dejhan, K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.192-194
    • /
    • 2003
  • Since the details in quasi-homogeneous region will be destroyed from the conventional global image enhancement method such as histogram equalization. This defect is caused by the saturation of gray level in equalization process. So the local histogram equalization for each quasi-homogeneous region will be used in order to improve the details in the region itself. To obtain the quasi- homogeneous regions, the original image must be segmented. Here we applied the watershed transform to the interesting image. Since the watershed transform is based on mathematical morphology, therefore, the regions touch can be effectively separated. Hence two adjacent regions which have the similar gray pixels will be split off. The process will be independently applied to three different spectral images. Then three different colors are assigned to each processed image in order to produce a color composite image. By the proposed algorithm, the result image shows the better perception on image details. Therefore, the high efficiency of image classification can be obtained by using this color image.

  • PDF

Automatic Panelizing Algorithms of Free-form Buildings

  • Lee, Donghoon;Lim, Jeeyoung;Habimana, Gilbert;Lee, Taick-Oun;Kim, Sunkuk
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.425-428
    • /
    • 2015
  • New technologies using a CNC machine are being developed to reduce the production cost of free-form buildings. For production of free-form members using such technologies, vast free-form buildings should be first split into multiple panels that are productible. Taking into consideration of the curved surface of free-form members, the segmented free-form panels may vary in shape and size, which may cause a lot of errors. In addition, it is time-consuming for the work. However, the current panelizing work is completed with the trials and errors of engineers and architectural designers even in large-scale projects, which results in increased construction duration and cost. Thus, it is necessary to develop a technology for panelizing free-form panels so as to maximize the economic feasibility of production technologies for free-form concrete members. The study intends to develeop automatic panelizing algorithms of free-form buildings considering the curved surface and size of free-form panels and the production conditions. The developed algorithms will be useful in applying the production technologies of free-form buildings using CNC machine and reducing the cost.

  • PDF

HEVC Encoder Optimization using Depth Information (깊이정보를 이용한 HEVC의 인코더 고속화 방법)

  • Lee, Yoon Jin;Bae, Dong In;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.640-655
    • /
    • 2014
  • Many of today's video systems have additional depth camera to provide extra features such as 3D support. Thanks to these changes made in multimedia system, it is now much easier to obtain depth information of the video. Depth information can be used in various areas such as object classification, background area recognition, and so on. With depth information, we can achieve even higher coding efficiency compared to only using conventional method. Thus, in this paper, we propose the 2D video coding algorithm which uses depth information on top of the next generation 2D video codec HEVC. Background area can be recognized with depth information and by performing HEVC with it, coding complexity can be reduced. If current CU is background area, we propose the following three methods, 1) Earlier stop split structure of CU with PU SKIP mode, 2) Limiting split structure of CU with CU information in temporal position, 3) Limiting the range of motion searching. We implement our proposal using HEVC HM 12.0 reference software. With these methods results shows that encoding complexity is reduced more than 40% with only 0.5% BD-Bitrate loss. Especially, in case of video acquired through the Kinect developed by Microsoft Corp., encoding complexity is reduced by max 53% without a loss of quality. So, it is expected that these techniques can apply real-time online communication, mobile or handheld video service and so on.

Performance Analysis on Declustering High-Dimensional Data by GRID Partitioning (그리드 분할에 의한 다차원 데이터 디클러스터링 성능 분석)

  • Kim, Hak-Cheol;Kim, Tae-Wan;Li, Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1011-1020
    • /
    • 2004
  • A lot of work has been done to improve the I/O performance of such a system that store and manage a massive amount of data by distributing them across multiple disks and access them in parallel. Most of the previous work has focused on an efficient mapping from a grid ceil, which is determined bY the interval number of each dimension, to a disk number on the assumption that each dimension is split into disjoint intervals such that entire data space is GRID-like partitioned. However, they have ignored the effects of a GRID partitioning scheme on declustering performance. In this paper, we enhance the performance of mapping function based declustering algorithms by applying a good GRID par-titioning method. For this, we propose an estimation model to count the number of grid cells intersected by a range query and apply a GRID partitioning scheme which minimizes query result size among the possible schemes. While it is common to do binary partition for high-dimensional data, we choose less number of dimensions than needed for binary partition and split several times along that dimensions so that we can reduce the number of grid cells touched by a query. Several experimental results show that the proposed estimation model gives accuracy within 0.5% error ratio regardless of query size and dimension. We can also improve the performance of declustering algorithm based on mapping function, called Kronecker Sequence, which has been known to be the best among the mapping functions for high-dimensional data, up to 23 times by applying an efficient GRID partitioning scheme.