• 제목/요약/키워드: Split strength

검색결과 255건 처리시간 0.026초

Performance control analysis of concrete-filled steel tube sepa-rated spherical joint wind power tower

  • Yang Wen;Guangmao Xu;Xiazhi Wu;Zhaojian Li
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.137-149
    • /
    • 2023
  • In this study, to explore the working performance of the CFST split spherical node wind power tower, two groups of CFST split spherical joint plane towers with different web wall thicknesses and a set of space systems were analyzed. The tower was subjected to a low-cycle repeated load test, and the hysteresis and skeleton curves were analyzed. ABAQUS finite element simulation was used for verification and comparison, and on this basis parameter expansion analysis was carried out. The results show that the failure mode of the wind power tower was divided into weld tear damage between belly bar, high strength bolt thread damage and belly rod flexion damage. In addition, increasing the wall thickness of the web member could render the hysteresis curve fuller. Finally, the bearing capacity of the separated spherical node wind power tower was high, but its plastic deformation ability was poor. The ultimate bearing capacity and ductility coefficient of the simulated specimens are positively correlated with web diameter ratio and web column stiffness ratio. When the diameter ratio of the web member was greater than 0.13, or the stiffness ratio γ of the web member to the column was greater than 0.022, the increase of the ultimate bearing capacity and ductility coefficient decreased significantly. In order to maximize the overall mechanical performance of the tower and improve its economy, it was suggested that the diameter ratio of the ventral rod be 0.11-0.13, while the stiffness ratio γ should be 0.02-0.022.

아동 자아강도 척도의 개발 및 타당화 (Development and Validation of the Ego Strength Scale for Children)

  • 김세영;박부진
    • Human Ecology Research
    • /
    • 제51권5호
    • /
    • pp.537-549
    • /
    • 2013
  • The purpose of this study was to develop an objective Ego Strength Scale for Children useful in research and clinical fields for measuring the ego strength of 3rd-6th grade children and to test its validity and reliability. For these purposes, we conducted a two-stage study. First, the scale was developed through data collection, composition of components and questions, a preliminary survey, and a main survey. The main survey was conducted with 1,185 3rd-6th grade children in Seoul and Gyeonggi province, and analyzed through exploratory factor analysis and reliability analysis. Second, the scale we developed was validated through confirmatory factor analysis and convergent-discriminant validity analysis for testing validity related to internal structure. The secondary survey was conducted with 5,494 3rd-6th grade children in Seoul and the province of Gyeonggi, Chungcheong, Gangwon, Jeolla, Gyeongsang, and Jeju. The study concluded the following: First, the scale was designed to measure 4 factors: competence, initiative, elasticity, and sociability using 26 questions. Second, the Ego Strength Scale for Children was found to be highly valid through validity tests. In addition, it showed high reliability in an internal consistency test and split-half reliability test. As this study developed and validated the Ego Strength Scale for Children in the current situation in which there are few objective instruments to measure children's ego strength, it is meaningful in that it laid the basis for broader future research on ego strength.

홉킨슨 압축봉 장치를 이용한 텅스텐 합금의 동적 재료 특성에 관한 연구 (A Study on the Dynamic Material's Characteristics of Tungsten Alloy using Split Hopkinson Pressure Bar)

  • 황두순;노병래;홍성인
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.92-99
    • /
    • 2005
  • Tungsten heavy metal is characterized by a high density and novel combination of strength and ductility. Among them, 90W-7Ni-3Fe is used for applications, where the high specific weight of the material plays an important role. They are used as counterweights, rotating inertia members, as well as fur defense purposes(kinetic energy Penetrators, etc.). Because of these applications, it is essential to detemine the dynamic characteristics of tungsten alloy. In this paper, Explicit FEM(finite element method) is employed to investigate the dynamic characteristics of tungsten heavy metal under base of stress wave propagation theory for SHPB, and the model of specimen is divided into two parts to understand the phenomenon that stress wave penetrates through each tungsten base and matrix. This simulation results were compared to experimental one and through this program, the dynamic stress-strain curve of tungsten heavy metal can be obtained using quasi static stress-strain curve of pure tungsten and matrix.

변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성 (Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates)

  • 송정한;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성 (Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates)

  • 송정한;허훈
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.

Mechanical and durability properties of fluoropolymer modified cement mortar

  • Bansal, Prem Pal;Sidhu, Ramandeep
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.317-327
    • /
    • 2017
  • The addition of different types of polymers such as SBR, VAE, Acrylic, etc. in concrete and mortar leads to an increase in compressive, tensile and bond strength and decrease in permeability of polymer modified mortar (PMM) and concrete (PMC). The improvement in properties such as bond strength and impermeability makes PMM/PMC suitable for use as repair/retrofitting and water proofing material. In the present study effect of addition of fluoropolymer on the strength and permeability properties of mortar has been studied. In the cement mortar different percentages viz. 10, 20 and 30 percent of fluoropolymer by weight of cement was added. It has been observed that on addition of fluoropolymer in mortar the workability of mortar increases. In the present study all specimens were cast keeping the workability constant, i.e., flow value $105{\pm}5mm$, by changing the amount of water content in the mortar suitably. The specimens were cured for two different curing conditions. Firstly, these were cured wet for one day and then cured dry for 27 days. Secondly, specimens were cured wet for 7 days and then cured dry for 21 days. It has been observed that compressive strength and split tensile strength of specimens cured wet for 7 days and then cured dry for 21 days is 7-13 percent and 12-15 percent, respectively, higher than specimens cured one day dry and 27 days wet. The sorptivity of fluoropolymer modified mortar decreases by 88.56% and 91% for curing condtion one and two, respectively. However, It has been observed that on addition of 10 percent fluoropolymer both compressive and tensile strength decreases, but with the increase in percentage addition from 10 to 20 and 30 percent both the strengths starts increasing and becomes equal to that of the control specimen at 30 percent for both the curing conditions. It is further observed that percentage decrease in strength for second curing condition is relatively less as compared to the first curing condition. However, for both the curing conditions chloride ion permeability of polymer modified mortar becomes very low.

Evaluation of Bonding Strength of Larch Cross-Laminated Timber

  • Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권4호
    • /
    • pp.607-615
    • /
    • 2016
  • The delamination along the annual ring on the cross-section of laminae and the bonding strength according to the tangential angle between laminae were evaluated for the production of 3-ply cross-laminated timber (CLT) using domestic larch. Since there is no standard for CLT in Korea, the production and test of specimens for bonding strength followed the standard procedure of "Structural glued laminated timber" (KS F 3021). The standard specifies to exclude any measurement from the cracks of timbers resulted from drying or knots during delamination test of the glued laminated timbers. However, the failure of cross-sectional tissues along the annual rings was observed near the glue-line of all specimens during the delamination test. Because this phenomenon can generate defects in the CLT that may be exposed to various temperatures and relative humidities after the actual construction, the delamination percentage was measured by including this wood failure. As a result, the delamination percentage of the CLT which had been combined in such a way that the annual rings of outer lamina were directed inward was the lowest, which was around 13%, regardless of the annual ring direction of the middle lamina. On the other hand, the delamination percentage of the CLT which had been combined in such a way that the annual rings of outer lamina were directed outward was the highest, which was around 26%. Furthermore, end-split occurred in the outer lamina during the drying process of the boiling delamination test, which affected the delamination percentage. Therefore, the soaking delamination test was found to be more appropriate for evaluating the delamination strength of CLT. The block shear strength of larch CLT was $3.9{\pm}0.9$ MPa on average, which was 46% lower than the block shear strength requirement (7.1 MPa) of the standard, but satisfied the criteria of the block shear strength (3.5 MPa) of the European Standard (prEN 16351: 2013).

인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구 (The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate)

  • 최세진;김도빈;이경수;김영욱
    • 한국건축시공학회지
    • /
    • 제19권4호
    • /
    • pp.313-322
    • /
    • 2019
  • 본 연구는 최근 사용량이 증대하고 있는 저시멘트 배합을 대상으로 국내생산 인공경량 잔 굵은골재의 혼합비율에 따른 경량콘크리트의 물성 및 강도특성을 비교 검토한 것으로서 실험결과, 프리웨팅 시간이 24시간 증가할 경우 모르타르 플로우값이 약 3~5% 감소하는 것으로 나타났으며 경량잔골재 사용에 의해 모르타르 배합에서 약 10.4%의 기건단위질량 감소효과를 얻을 수 있는 것으로 나타났다. 또한 경량굵은골재의 혼합비율에 따른 경량콘크리트의 기건단위질량은 5~10mm 크기인 LWG10 경량굵은골재의 혼합비율이 높아질수록 선형적으로 기건단위질량이 증가하였으며 LWG10 경량굵은골재를 혼합할 경우 LWG10 혼합비율에 관계없이 재령 7일에 약 30~31MPa 수준의 유사한 압축강도를 발현하였다.

염해 손상을 받는 RC 교량 바닥판의 강도 신뢰성 지수와 철근 부식도 등급과의 관계 연구 (A Study on the Relation of Rebar Corrosion Rate and the Strength Reliability Index of RC Slab Decks having Chloride Contamination)

  • 차철준;박미연;조효남
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권2호
    • /
    • pp.121-128
    • /
    • 2005
  • 본 연구의 목적은 염화물의 침투로 인한 RC 교량 바닥판의 신뢰성지수를 계산하고 철근부식으로 인한 교량 덱의 상태등급과 신뢰성지수와의 관계를 연구하는 것이다. 이런 목적을 위해 먼저 휨강도와 관련한 파괴확률을 열화(제설염에 의한 장기간의 구조물 손상 및 구조물 안전성 저하)와 관련하여 계산하였으며 구조물 면에 포함된 염화물의 농도, 피복두께 및 철근의 초기부식시간 그리고 염화물 확산으로 인한 철근의 균열시간 등을 MCS기법을 이용하여 찾아내었다.

교정구에 의한 음향 도플러유향유속계의 평균 체적후방산란강도 검토 (Verification of mean volume backscattering strength from acoustic doppler current profiler by using calibrated sphere method)

  • 양용수;이경훈;이대재;이동길
    • 수산해양기술연구
    • /
    • 제50권4호
    • /
    • pp.551-555
    • /
    • 2014
  • ADCPs have been widely used to estimate the dynamic characteristics and biomass of sound scattering layers (SSLs), and swimming speed of fish schools for analyzing SSLs spatial distribution and/or various behavior patterns. This result showed that the verification of the mean volume backscattering strength (MVBS or averaged SV, dB) acquired by the ADCP would be necessary for a quantitative analysis on the spatial distribution and the biomass estimation of the SSLs or fish school when ADCP is used for estimating their biomass. In addition, the calibrated sphere method was used to verify values of each MVBS obtained from 4 beams of ADCP (153.6 kHz) on the base of 3 frequencies (38, 120, 200 kHz) of Scientific echo sounder's split beam system. Then, the measured SV values were compared and analyzed in its Target Strength (TS, dB) values estimated by a theoretical acoustic scattering model.